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Empirical Bayes (EB) when estimation precision predicts parameters

• Empirical Bayes methods are popular for improving data-driven economic decisions
→ Want to make decisions, but only have noisy estimates
→ EB methods better recover true parameters from noisy estimates
→ Ex: better learn true neighborhood quality, true teacher value-added, firm-level discrimination, . . .

→ Leading special case is shrinkage (shrink noisy estimates to the mean of estimates)
→ Shrinkage estimates = posterior mean under an estimated prior (hence empirical Bayes)

• Conventional EB methods embed a prior independence assumption
→ Precision of estimates does not predict true parameters
→ Economically questionable, statistically rejected

• Imposing prior independence can harm EB methods
→ Shrinks to the wrong target and sometimes worse than doing nothing

• Contributions: (1) new EB methods that generalize; (2) prove theoretical guarantees
→ Normalize away potential dependence and apply best-in-class existing methods
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Motivating empirical example (neighborhood characteristics)

• To illustrate, the Opportunity Atlas (Chetty et al., 2020) produces economic mobility
estimates
Yi∼N (θi,σ2

i )

with standard errors
σi

for true economic mobility
θi

at the Census tract
i

level

• Example decision problem: select high mobility Census tracts
→ Bergman et al. (2024) selected top 1

3 , nudged low-income households to move
→ Mathematically: Observe (Yi, σi), want to pick out the high θi’s
→ Pick units with high shrinkage estimates (EB posterior means)⇝ better selections

• For this problem,
θi yσi

prior independence might cause bad selections: Consider
θi = E [Income rank | Black,Parents@P25,Tract i] (race-spec. version of Bergman et al.’s target)

→ Why θi ̸y σi: Lower σi↭More poor Black families in i (sample size)↭ Lower mobility
⇝ Predicts positive correlation between σi and θi

3Bergman et al’s target also violates PI (mildly after covariates) Empirical evidence for (% black or % poor)-on-mobility correlation
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A preview of new empirical Bayes method (CLOSE)
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• For selecting top 1
3 , large difference in

performance (average θ among
selected tracts)

• CLOSE selects neighborhoods that are
higher by 0.5 percentile ranks [≈ $500

in annual income]

• (CLOSE)−(Conventional)
(Conventional)−(No shrinkage) = 320%

• These performance calculations adjust
for covariates; if not, conventional EB
performs worse than no shrinkage

12Residualize by covariates More nonlinear conditional mean



1. Empirical Bayes framework

2. New empirical Bayes method (CLOSE)

3. Theoretical guarantees for CLOSE

4. Empirical application
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How does EB work and why can I estimate a prior?

• Recall: we have estimates
Yi

and standard errors
σi

for parameters
θi

Covariates

→ Sufficiently general for many empirical contexts beyond neighborhood mobility
Kane and Staiger (2008), Deming (2014), Chandra et al. (2016b), Aaronson, Barrow, and Sander (2007), Arnold,

Dobbie, and Hull (2022), Bloom et al. (2019), Kline and Walters (2021), Kline, Rose, and Walters (2023), Abadie et al.

(2023), Diamond and Moretti (2021), Azevedo et al. (2020), Stock and Watson (2012), and Finkelstein, Gentzkow,

and Williams (2021)

→ NB: We assume Yi are credible estimates of θi through (natural) experiments and/or
structural models

→ Economic intuition suggests failure of prior independence
→ e.g., θ is hospital value-added and more patients select into better hospitals other examples

• Empirical Bayes works by estimating the distribution of θi and use it as a prior
• We maintain standard empirical Bayes assumptions:

1. Gaussian sequence model: Yi is Gaussian with variance σ2
i : known vs. estimated σi

2. Random effects: Parameters are random (θi, σi)
i.i.d.∼ P

(joint)
0

EB interpretation without iid

• Oracle Bayes (optimal): If we knew the distribution P0 of (θ | σ), we can obtain a
posterior distribution θi | Yi, σi under P0

→ Policy decisions with respect to this oracle posterior are optimal
→ Selecting high-mobility neighborhoods (Bergman et al., 2024)⇝ rank on EP0 [θi | Yi, σi]

• Empirical Bayes (feasible): Approximate these infeasible decisions by estimating the
distribution P0 of θi | σi from data (Yi, σi)

→ “Shrinkage estimates” are empirical Bayes estimates of the posterior mean, EP̂ [θi | Yi, σi]
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Prior independence

• Empirical Bayes imitates the oracle by estimating the oracle prior P0

• Prior independence (θi y σi) simplifies this estimation:
→ Independent Gaussian (Morris, 1983): θi | σi

i.i.d.∼ N (m0, s
2
0)

Conventional shrinkage formula = posterior mean under this model

E[θi | Yi, σi] =
σ2
i

s20 + σ2
i

m0 +
s20

s20 + σ2
i

Yi

→ Independent NPMLE (Gilraine, Gu, and McMillan, 2020): θi | σi
i.i.d.∼ G(0)

Same shrinkage issue

Nonparametric maximum likelihood has good theoretical and computational properties under
prior independence
New method (CLOSE) builds on these properties

• Economic reasoning suggests implicit sample size, at least, predicts θi:
→ Selection: The sample size ni (used to compute Yi) selects on θi (Chandra et al., 2016a)

→ Congestion: The sample size ni causes an increase/decrease in θi (Derenoncourt, 2022)
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1. Empirical Bayes works by imitating an oracle

2. New empirical Bayes method (CLOSE)
→ Relax prior independence, but making use of NPMLE
→ Normalize away the dependence in the first two conditional moments

(location and scale)
→ Conditional location-scale empirical Bayes

3. Theoretical guarantees for CLOSE

4. Empirical application
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Normalizing prior dependence away

• Relaxing prior independence⇝ posit more flexible distribution for θi | σi

• Assume: For some G0 with mean 0 and variance 1,

P0(θ ≤ q | σ) = G0

(
q −m0(σ)

s0(σ)

)
(Conditional Location-Scale)

• CLOSE estimates the distribution of
P0

θ1:n | σ1:n by estimating the
m0(·),s0(·),G0(·)

hyperparameters
• Estimating (m0, s0): m0(σ) = E[Y | σ], s20(σ) = Var(Y | σ)− σ2

• Estimating G0: Thanks to location-scale ass’n, we can normalize dependence away:

τi =
θi −m0(σi)

s0(σi)
Zi =

Yi −m0(σi)

s0(σi)
νi =

σi
s0(σi)

In transformed space, Zi is a Gaussian signal on τi where prior independence holds:

Zi | τi, νi ∼ N (τi, ν
2
i )

cf. Yi|θi,σi∼N (θi,σ2
i )

τi | νi
i.i.d.∼ G0

Prior independence
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Proposed method: CLOSE (GitHub @jiafengkevinchen/close)

• We propose a natural strategy: Conditional location-scale empirical Bayes

1. Estimate the
m̂(σ),ŝ(σ) for m0,s0

conditional moments (e.g., local polynomial regression)
2. Estimate G0 on (Ẑi, ν̂i) via Independent NPMLE

(Y, σ), θ
Transform−→

(
Ẑ =

Y − m̂(σ)

ŝ(σ)
, ν̂ =

σ

ŝ(σ)

)
, τ

Approx. satisfies prior independence if m̂ ≈ m0 and ŝ ≈ s0

Estimate G0−→ Ĝ

Jiang (2020), Koenker and Gu (2017), Koenker and Mizera (2014), Jiang and Zhang (2009), Soloff,
Guntuboyina, and Sen (2021), Kiefer and Wolfowitz (1956), Gilraine, Gu, and McMillan (2020), Saha and
Guntuboyina (2020), and Polyanskiy and Wu (2020)

3. Plug in prior estimates to decision rules δ̂EB

(
m̂, ŝ, Ĝ

)
(e.g. take the posterior mean)

18Why CLOSE? Alternatives don’t dominate CLOSE Robustness to conditional location-scale assumption
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ŝ(σ)
, ν̂ =

σ
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Proposed method: CLOSE (GitHub @jiafengkevinchen/close)

• We propose a natural strategy: Conditional location-scale empirical Bayes

We use NPMLE to compute Ĝ More on NPMLE :

Ĝ ∈ argmax
G∈P(R)

n∑
i=1

log

(∫ ∞

−∞

1

ν̂i
φ

(
Ẑi − τ

ν̂i

)
G(dτ)

)
density of Ẑ ∼ N (0, ν̂2) ⋆ G [G-Gaussian mixture]

where P(R) is the set of all distributions on R.
→ Approximate P(R) with a grid⇝ Highly computationally tractable concave program (Koenker

and Mizera, 2014; Koenker and Gu, 2017)
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ŝ(σ)
, ν̂ =

σ
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1. Empirical Bayes works by imitating an oracle

2. CLOSE works by normalizing and applying NPMLE

3. Theoretical guarantees for CLOSE
→ Measuring performance by regret
→ Prove regret bounds

4. Empirical application

19



Regret

• Goal: Characterize the performance of CLOSE for various decision problems
• Recall the empirical Bayes logic: “emulate the oracle Bayesian by estimating P0”

→ This is sensible b/c oracle decision δ⋆ is optimal for expected loss (Bayes risk)

δ⋆ ∈ argmin
δ

Rn(δ)

Bayes risk

= argmin
δ

EP0
[L(δ(Y1:n, σ1:n), θ1:n)]

Expected loss (over θ, Y | σ)

→ With large n, hopefully P̂ ≈ P0 and Rn(δ̂EB) ≈ Rn(δ
⋆)—but how close exactly?

• Natural to consider regret (Jiang and Zhang, 2009), which is the suboptimality of EB:

Regret =

Bayes risk of EB rule

Rn(δ̂EB) −
Bayes risk of oracle

Rn(δ
⋆)

• For estimating θ in mean-squared error (here the posterior mean θ⋆i is optimal)

Regret = EP0

[
1

n

n∑
i=1

(δ̂i(Yi, σi)− θi)
2

]
− EP0

[
1

n

n∑
i=1

(θ⋆i − θi)
2

]
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Main regret rate result (preview)

Regret =

Bayes risk of EB rule

Rn(δ̂EB) −
Bayes risk of oracle

Rn(δ
⋆)

• Main result: For estimation in squared error, under the location-scale model, CLOSE
attains

Regret ≤ C0(log n)
C1 ·max

(
E sup

σ
|m̂(σ)−m0(σ)|2,E sup

σ
|ŝ(σ)− s0(σ)|2

How fast the (error)2 of estimating η0 = (m0, s0) shrinks as fn of n

)

→ MSE Regret ≤ (How poorly we estimate η0 via nonparametric regression)2
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We are CLOSE to the oracle

Theorem (MSE regret control, informal)

1. Assume the location-scale assumption holds Robustness to CLS

2. Assume G0 is exp(−c0|x|c1)-tailed and variances (s20(σ), σ
2) are bounded away from 0 and ∞

As’ns

3. (Hölder-p smoothness) Assume m0(·), s0(·) have p bounded derivatives

4. (Good estimators) Assume estimators m̂(·), ŝ(·) are suitably smooth and rate-optimal in ∥·∥∞

Then, there exists constants C0, C1 > 0 such that, uniformly over (P0, σ1:n),

MSE regret of CLOSE

Rn(δEB(m̂, ŝ, Ĝ))−Rn(δ
⋆) ≤ C0(log n)

C1

(Error)2-rate for estimating Hölder-smooth η0(
n
− p

2p+1

)2
. Proof ideas

22Controlling MSE regret for CLOSE is not much harder than estimating 1D functions with p derivatives



Regret upper bound: context and fundamental limits

• Result recap: Squared error regret rate is n−2p/(2p+1) up to logs
→ n−p/(2p+1) is the fundamental difficulty of estimating 1d functions w/ p derivatives

• This rate smoothly extrapolates from existing regret rates to accommodate prior
dependence:

→ Without any assumption on P0: the worst-case regret ̸→ 0

→ This regret upper bound: Smoothness on σ 7→ (θ | σ) =⇒ rate in between
→ With prior independence: the regret is Õ(n−1) (Soloff, Guntuboyina, and Sen, 2021; Jiang, 2020)

• Minimax lower bound Statement+intuition : Under the location-scale model, the worst-case
regret of any procedure ≳ n−2p/(2p+1)

=⇒ Upper bound is not improvable in the worst-case up to logs
• MSE regret upper bound, natural extension of literature, and not improvable
• Next, how is MSE result useful for other economic decisions?

→ Ranking/classification-type problems (Bergman et al., 2024)
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Two ranking/classification problems

1. (Utility maximization by selection) The utility function is
Utility function

−L(δ, θ1:n) =
1

n

n∑
i=1

decision rule (binary)

δi(Y1:n, σ1:n) (θi −
known
ci )

→ The oracle Bayes rule thresholds on the oracle posterior means θ⋆i : δ⋆i = 1 (θ⋆i ≥ ci)
Treatment choice: Manski (2004), Kitagawa and Tetenov (2018), Athey and Wager (2021), . . .
Classification: Audibert and Tsybakov (2007), Bonvini, Kennedy, and Keele (2023), . . .

2. (Top-m selection) −L(δ, θ1:n) =
1
m

∑n
i=1

binary, sum to m

δi(Y1:n, σ1:n) θi

→ In Bergman et al. (2024), m = n/3. We can think of −L as the expected mobility that a mover
experiences, if the mover moves uniformly at random to one of the recommended tracts

→ The oracle Bayes rule ranks the oracle Bayes posterior means: Set δ⋆i = 1 iff θ⋆i is in the top
m Generalization to weighted version
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MSE regret rate implies bounds for ranking-type decisions

• Preview: Regret for ranking ≤ (MSE regret)1/2 = Õ(n−p/(2p+1))

• In all three decision problems, the oracle Bayes rule is a function of the oracle PMs θ⋆i
• The empirical Bayes recipe says we should plug in certain estimates of the oracle PM θ̂i

• Intuition: When EB makes a selection mistake, if MSE regret is low, the mistake isn’t costly

Theorem

1. For utility maximization by selection,
Bayes risk of plug-in θ̂

R(UM)
n (θ̂) −

Bayes risk of oracle

R(UM)
n (θ⋆) ≤

( Bayes regret in squared error

E

[
1

n

n∑
i=1

(
θ⋆i − θ̂i

)2])1/2

2. For top-m selection,

R(Top)
n (θ̂)−R(Top)

n (θ⋆) ≤ 2

√
n

m

(
E

[
1

n

n∑
i=1

(
θ⋆i − θ̂i

)2])1/2

≲∥η̂−η0∥∞(logn)C1/2 by regret bound

Remarks
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Theory summary

• CLOSE attains squared error regret upper bound under location-scale model

• This upper bound is approximately tight: Matches regret lower bound

• This upper bound is useful: Regret for ranking-type problems dominated by regret in
squared error

• Maybe the upper bound is too optimistic. In the paper: Without location-scale,
→ (Interpretation under misspecification) CLOSE brings the conditional distributions θi | σi

closer to each other, so that prior independence is a plausibly better approximation, and
NPMLE has a better shot at succeeding

→ (Bounded badness under misspecification) a version of CLOSE achieves risk within a
constant multiple of a notion of minimax risk Robustness to CLS
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1. Empirical Bayes works by imitating an oracle

2. CLOSE works by normalizing and applying NPMLE

3. CLOSE is regret rate-optimal

4. Empirical applications
→ Simulation
→ Empirical application to selecting high-mobility neighborhoods

27



Opportunity Atlas (Chetty et al., 2020)

• Recall: The OA produces
(Yi,σi)

estimates for
θi

economic mobility at the
i

Census tract level
→ Causal evidence that neighborhoods matter for upward mobility (Chetty and Hendren, 2018; Chetty,

Hendren, and Katz, 2016; Chyn and Katz, 2021; Laliberté, 2021)

→ Chetty et al. (2020): Observational measures predict these causal effects
→ Bergman et al. (2024): Incentivizes poor households to move⇝ find significant take-up
→ A program that identifies and recommends high-mobility areas can have real gains

• For our purposes, OA measures of mobility take the following form
θi is the population mean outcome for individuals of race growing up in Census tract i, whose parents
are at the 25th pct of nat’l income

→ θi = E[Income rank | Black,Parents@P25,Census tract i].
• EB applied to residual of (Yi, θi) against covariates; fitted values γ̂′X are added back

• Empirical ex. today: Perform calibrated simulation
I draw from a known DGP

constructed based on real data

and empirical application
I evaluate out-of-sample

on the real data
28Residualized against covariates OA estimation details Empirical application



Calibrated simulation (location-scale model misspecified) Details on calibrated DGP

2.25 2.00 1.75 1.50 1.25 1.00 0.75
log10 (Standard error i)

0.0

0.2

0.4

0.6

0.8

E
st

im
at

es
 Y

i

Opportunity Atlas estimates for 
 E[Income rank | Black, Parent at 25th Percentile]

All tracts in the largest 20 Commuting Zones

Real estimates
Simulated estimates (NPMLE by vingtiles)

• Estimate P̃ for P0 (NPMLE within vingtiles
of σ, without imposing location-scale
model)

• On repeated draws from P̃ , compute
various EB procedures

• P̃ ≈ P0 in terms of the implied distribution
of Yi
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Calibrated simulation (location-scale model misspecified)

0 20 40 60 80 100
What % of the Naive-to-Oracle MSE gain do we capture?

Mean income rank

Mean income rank [white]

Mean income rank [Black]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

Incarceration

Incarceration [white]

Incarceration [Black]

Mean performance

CLOSE-NPMLE
Independent Gaussian
Independent NPMLE

(Naive = using Yi directly)
30



Calibrated simulation (location-scale model misspecified)

0 20 40 60 80 100
What % of the Naive-to-Oracle MSE gain do we capture?

Mean income rank

Mean income rank [white]

Mean income rank [Black]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

Incarceration

Incarceration [white]

Incarceration [Black]

Mean performance

918588

9587 90

9382 88

9357 81

9575 80

9746 53

9151 59

9774 81

9748 52

9565 72

CLOSE-NPMLE
Independent Gaussian
Independent NPMLE

(Naive = using Yi directly)
31More comprehensive results



1. Empirical Bayes works by imitating an oracle

2. CLOSE works by normalizing and applying NPMLE

3. CLOSE is regret rate-optimal

4. Empirical application
→ CLOSE has near oracle performance in simulations
→ Empirical application to selecting high-mobility neighborhoods Back
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Empirical application to Creating Moves to Opportunity (Bergman et al., 2024)

Opportunity Atlas 
(Chetty et al., 2018) 
estimates of economic 
mobility for Seattle

Select top third of 
Census tracts
via empirical Bayes 
shrinkage methods

Provide resources to Housing 
Choice Voucher recipients to 
move to selected high-
mobility areas

• Question: Can we select more economically mobile tracts (on average) with CLOSE?
• We validate performance out-of-sample (i.e. unbiased loss estimates)

→ Ideally, sample-split the micro-data⇝ Obtain Y train
i , Y test

i (cond. independent given θi)
→ Use Y train

i to estimate decision rules, evaluate with Y test
i (Avg. θ among selected)

→ Don’t have the micro-data, but can emulate the splitting via coupled bootstrap (90/10-split)

33Oliveira, Lei, and Tibshirani (2021)



2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank

Mean income rank [white]

Mean income rank [Black]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

Incarceration

Incarceration [white]

Incarceration [Black]

Gain as % of 
value of basic EB

CLOSE-NPMLE
Independent Gaussian
Naive (zero)



2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank

Mean income rank [white]

Mean income rank [Black]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

Incarceration

Incarceration [white]

Incarceration [Black]

47.4 Estimated average  selected (original scale)47.4

51.651.6

38.738.2

18.618.5

23.523.2

10.17.1

4.44.0

3.42.4

7.95.8

Gain as % of 
value of basic EB

CLOSE-NPMLE
Independent Gaussian
Naive (zero)



2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank

Mean income rank [white]

Mean income rank [Black]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

Incarceration

Incarceration [white]

Incarceration [Black]

47.4  [-0.0] Estimated average  selected (original scale)47.4 -9%

51.6  [+0.0]51.6 +0%

38.7  [+0.5]38.2 +324%

18.6  [+0.1]18.5 +53%

23.5  [+0.3]23.2 +25%

10.1  [+3.0]7.1

4.4  [+0.4]4.0 +109%

3.4  [+1.1]2.4 +1532%

7.9  [+2.2]5.8

Gain as % of 
value of basic EB

CLOSE-NPMLE
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Naive (zero)
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Performance difference relative to picking uniformly at random (percentile rank or percentage point)

Mean income rank

Mean income rank [white]

Mean income rank [Black]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

Incarceration

Incarceration [white]

Incarceration [Black]

47.4  [-0.0]47.4 -0%

51.6  [+0.0]51.6 +0%

38.7  [+0.5]38.2 +15%

18.6  [+0.1]18.5 +1%

23.5  [+0.3]23.2 +5%

10.1  [+3.0]7.1 +212%

4.4  [+0.4]4.0 +25%

3.4  [+1.1]2.4 +163%

7.9  [+2.2]5.8 +226%

Gain as % of
value of data

CLOSE-NPMLE
Independent Gaussian



Recap/Conclusion Back

• Conventional empirical Bayes methods perform badly when prior independence fails
→ Shrinks to the wrong target and makes unreasonable selections

• New procedure (CLOSE) normalizes dependence away and applies SotA methods
→ Relaxes prior independence, but still taking advantage of NPMLE

• Theoretical contributions
→ We prove that CLOSE’s squared error risk is close to the oracle at optimal rates
→ This result implies regret rates for two ranking-type decision problems

• In calibrated sims, near-oracle MSE performance
• Significantly improves selection decisions for selecting the top third in the OA data,

relative to standard methods
→ Mean income rank for Black individuals: 0.5 percentile rank gain (15% of the value of data,

320% of the value of basic EB) Targeting minority-focused outcomes vs. targeting pooled outcomes

→ P(income ranks in the top 20) for Black individuals: 3pp gain (220% the value of data)
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Non-iid Back

• Consider Y | θ,Σ ∼ N (θ,Σ) where (θ,Σ) has some joint distribution

• For squared error loss, consider separable decision rules
1

n

n∑
i=1

E
[
(θi − δi(Yi))

2 | Σ
]

• Optimal decision rule is δ⋆i (Yi) = E[θi | Yi,Σ]

• This decision rule depends on the marginal distribution of θi (θi | Σ)

• Empirical Bayes methods assuming iid data can be viewed as attempting to learn θi | Σ

• Statistical guarantees for EB procedures might not extend, depending on the correlation
structure of θ | Σ
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Mean income rank (unresidualized by covariates) Back
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95% uniform confidence band for E[ ]
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Mean income rank (residualized by covariates) Back
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Residualize by covariates Back
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Nonlinear conditional mean Back
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More on NPMLE Back

6 4 2 0 2 4 6
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Empirical Bayes on the transformed estimates

Transformed Estimates
Zi = [Yi m( i)]/s( i)
NPMLE estimate of G0

Ĝ ∈ argmax
G∈P(R)

n∑
i=1

log

(∫ ∞

−∞

1

ν̂i
φ

(
Ẑi − τ

ν̂i

)
G(dτ)

)

• Tuning free statistical objective
• Approximate computationally with fine

grid over an interval, which results in a
concave optimization problem
→ Theoretically, no bias-variance tradeoff

b/c objective is “self-regularized”
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Known vs. estimated σ2
i

Back

• We assume that the asymptotic approximation σ−1
i (Yi − θi)

d−→ N (0, 1) holds exactly
→ If we’re calling σi a “standard error,” we would rely on Yi ∼ N (θi, σ

2
i ) for inference—in this

case exactly ignoring the asymptotics
→ Still, this is a theoretical limitation, but imposed by much of the EB literature
→ Behavior of empirical Bayes methods when the asymptotic approximation is poor is an

important consideration for future work

• The asymptotic approximation is valid regardless if we use the true σ∗
i or some

estimated σi, provided that

(σ∗
i )

2 = σ2
0i/n σ2

i = σ̂2
0i/n σ̂2

0i = σ2
0i + op(1)

• Thus, if happy with ignoring asymptotics (on a
√
n-scale), also happy with ignoring the

difference between σ∗
i and σi
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Alternatives to CLOSE Back

∄ free-lunch improvement of our assumptions

• Not the first to consider the non-independence problem
• For example,

→ 2D empirical Bayes with Yi = (Yi, niσ
2
i ) (Gu and Koenker, 2017; Banerjee et al., 2020) has 1 and 4

→ SURE-based procedures (Xie, Kou, and Brown, 2012; Kwon, 2021) has 2

→ Working off t-statistics Y/σ has 2 and 3

→ Variance-stabilizing transforms with binary-means data has 1 and 3

• Generally speaking, existing alternatives have some of the following features

1 Still assumes θi is independent from some known
e.g. sample size

nuisance parameter
2 Limit optimality consideration to a restricted class of procedures
3 Change the objective function
4 Require underlying microdata
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Generalization of Top-m Selection Back

• Suppose each position of 1, . . . , n is associated with a weight wk where
∑

iwi = m,
such that wn ≥ wn−1 ≥ . . ..

• The DM outputs a ranking of i = 1, . . . , n denoted by a permutation σ(i), where i = σ(n)

is the most favorable element.
• The utility of the DM is

1

n

n∑
k=1

wkθσ(k)

• The oracle Bayes rule is rank according to posterior mean θ⋆i
• When wk ∈ {0, 1}, this problem is top-m selection
• If people are more likely to move to places where we place a higher recommendation in

ways that depend solely on rank, then this corresponds to a reasonable objective in
CMTO. 49



Regret control of different decision problem Back

• Can replace the L2 norm for utility maximization by selection with L1 norm, but
worst-case L1 and L2 risks are the same.

• These bounds are possibly not tight. However, the plug-in procedures considered is
natural, and so its performance may be better than the bounds imply.

• Coey and Hung (2022) study top-m selection. Their bound is in terms of error in
estimating G(0), which is logarithmic in nonparametric settings. Their bound in
parametric settings is tighter than ours.

• For the generalization of top-m selection, the bound is

2
∥w∥√
n

· (E[MSEn])
1/2
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Controlled tails Back

• If we only have η̂ = (m̂, ŝ) being OP (rn)-consistent, we can show that there is some
probability (1− δ) event An = {∥η̂ − η0∥∞ ≤ C(δ)rn} such that

E[Regretn | An] ≤ C0(log n)
C1rn

• Turns out, due to the data being thin tailed, there exists some C(q), C2 s.t.

P(∥η̂ − η0∥∞ > C(q)(log n)C2rn) ≤
1

nq
(Controlled tails)

• This allows us to also control
E[Regretn1(AC

n )].
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Relaxing the requirement on ŝ Back

• Since we assumed ŝ is sup-norm consistent at rate rn → 0 and s0 is bounded away
from zero, for all sufficiently large n, with probability tending to 1

• Hence at minimum, we can say that on some event An w.p. → 1 and for all n > N0 (so
that CrN0 ≪ (inf s0))

E[Regretn | An] ≤ C0(log n)
C1rn

• To show that
E[Regretn1(AC

n )] ≤ C0(log n)
C1rn

we need that AC
n is sufficiently unlikely (“controlled tails”), and that Regretn isn’t too

large. The latter is satisfied when ŝ ≥ c
n , which is satisfied with our truncation rule
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Opportunity atlas estimation details Back

• Let yj be the underlying microdata for individual j: e.g. Income rank for individual j.
• Restrict to a particular (race, sex) cell, consider a nonparametric estimate f̂ of the

function
E[yj | Family income rank,Sex,Race]

• Then, consider the regression for the particular (sex, race) cell:

yj = αi(j) + βi(j)f̂(rj) + Uj

where αi(j), βi(j) are tract-level fixed effects
• The estimate Yi is a fitted value of this regression:

α̂i(j) + β̂i(j)
1

ni

∑
j∈i

f̂(rj)

where σi is the corresponding standard error
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Other examples Back

• θi can be a value-added for some teacher (Kane and Staiger, 2008)

[more experienced teachers have higher value-added, Corr(θi, σi) < 0]

• treatment effect for some intervention in a metaanalysis (Azevedo et al., 2020)

[given fixed power, larger effect sizes correlate with smaller experiments,
Corr(θi, σi) > 0]

• racial contact gap for some firm (Kline, Rose, and Walters, 2023)

[empirically, firms with more precise estimates have less bias against Black names,
Corr(θi, σi) < 0]
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Robustness to location-scale Back

For simplicity, let’s assume now m0, s0 are known, but suppose τi =
θi−m0

s0
are not

identically distributed across i, and adversary chooses the shape τi | σi
• In CLOSE, if we assume G0 ∼ N (0, 1), the resulting decision rule

δ⋆CLOSE-Gaussian = m0(σi) +
s20(σi)

s20(σi) + σ2
i

(Yi −m0(σi))

is the best linear-in-Y decision rule for MSE (Weinstein et al., 2018)

• δ⋆CLOSE-Gaussian is also minimax in this game, with worst-case risk equal to

1

n

n∑
i=1

σ2
i

σ2
i + s20(σi)

s20(σi) ≥ c

(
1

n

n∑
i=1

s20(σi)

)
• How bad can Ĝ estimated by NPMLE mess up? If G̃ has mean 0 and variance 1, then

Worst-case Bayes Risk(G̃) ≤ C

(
1

n

n∑
i=1

s20(σi)

)
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How mild are these assumptions for regret upper bound? Back

Assume the following holds uniformly in n. The constants C and (log n)β are tied to
constants in the following assumptions.
• (Approximate NPMLE) Ĝ is an approximate NPMLE on (Ẑi, ν̂i) supported inside the

range of the data
• (Prior thin-tailed) The prior shape G0 has tails ≤ c1 exp (−c2|τ |α) for α ∈ (0, 2]:

→ All moments exist ⊃ Exponential-power tails ⊃ Subexponential ⊃ Subgaussian

• (Bounded, positive variances) The variances and conditional variances σ2
1:n, s

2
0(·) are

bounded away from zero and ∞
• (Good estimators) The estimators η̂ = (m̂, ŝ) are:

→ ∥η̂ − η0∥∞ = OP (n
−p/(2p+1)(log n)C2) with controlled tails Controlled tails

→ Reside in some function class V with metric entropy bound (e.g. Hölder; relaxed if X-fitting)
→ ŝ is bounded away from zero and infinity uniformly in n Can be relaxed
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Proof ideas for regret upper bound (1) Back

• (Z, ν, τ) satisfies prior independence. Problem: only have Ẑ, ν̂ , which depends on (m̂, ŝ)

• The logic of the previous literature (Jiang, 2020; Jiang and Zhang, 2009; Soloff, Guntuboyina, and Sen, 2021)

1. The infeasible NPMLE G̃n approximately maximizes the infeasible likelihood
G 7→ Ψn(m0, s0, G) = 1

n

∑
i log fN (0,νi)⋆G(Zi)

2. With high probability, approximate maximizers of the infeasible likelihood is close to G0 in
average Hellinger distance for the induced distribution of Zi

3. Any G̃ that is close in average Hellinger distance to G0 produces posterior means that are
close to those produced by G0

• Key component of our argument: Given good m̂, ŝ, the feasible NPMLE Ĝn also
approximately maximizes the infeasible likelihood (Modifying 1.)
→ Side effect: Our lower bound for Ψn(m0, s0, Ĝn) requires according modifications of the

Hellinger large-deviation inequality (Modifying 2.)
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Proof ideas for regret upper bound (2) Back

• Key component of our argument: Given good m̂, ŝ, the feasible NPMLE Ĝn also
approximately maximizes the infeasible likelihood
→ Side effect: Our lower bound for Ψn(m0, s0, Ĝn) requires according modifications of the

Hellinger large-deviation inequality
• Linearization:

Ψn(m̂, ŝ, Ĝn)−Ψn(m0, s0, Ĝn) ≈
1

n

n∑
i=1

∂log fi
∂η

(η̂(σi)− η(σi))

≤sup-norm rate

• Without bounding ∂log fi
∂η , the resulting rate is only Õ(n−p/(2p+1))

• Key observation is that∣∣∣∣∣ 1n
n∑

i=1

∂

∂η
log fĜn⋆N (0,ν2i )

(Zi)

∣∣∣∣∣ ≲ (log n)γ
(

Average Hellinger distance between Ĝn and G0

)
• Side effect: bound for likelihood depends on Hellinger distance 58



CLOSE is rate-optimal (up to logs) Back

Goal for LB: Given any procedure, what’s its worst-case regret under location-scale?
• Imagine an adversary picks m0, s0, G0 (value of game = difficulty of statistical problem)
• This is a harder problem than if we knew G0 = N (0, 1) and s0 = 1

• Here, can show that good posterior mean estimates θ̂i imply a good estimate m̂

• But m̂ cannot be too good (Stone, 1980) =⇒ θ̂i cannot be too good

Theorem (Regret lower-bound, informal)

Suppose m0, s0 belong to a Hölder class of order p. Then,

inf
θ̂

sup
(m0,s0),σ1:n∈[C3,C4],G0

E

[
1

n

n∑
i=1

(θ̂i − θ⋆i )
2

]
worst-case Bayes regret

≳ (Minimax IMSE for m0) ≳ n
− 2p

2p+1

59Ignatiadis and Wager (2019)



Covariates Back

There are additional covariates in the OA data. In keeping with Bergman et al. (2024), by default,
we residualize against the covariates linearly. For data (σi, Ỹi, θ̃i), we perform EB on
(σi, Yi = Ỹi −X ′

iβ̂, θ̃i = θ̃i −X ′
iβ̂) and ignore uncertainty in β̂.

• If Ỹi | σ2
i , θ̃i, Xi ∼ N (θ̃i, σ

2
i ) (“Xi only predicts mobility and does not predict noise in

estimating mobility”), then we do not need to adjust σi for residualized variables.

• Residualization against covariate mimics an oracle Bayesian who has access to the
residuals (though the location-scale assumptions are different for different
residualization schemes)
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Covariates used

The covariates used are poverty rate in 2010, share of Black individuals in 2010, mean
household income in 2000, log wage growth for high school graduates, mean family
income rank of parents, mean family income rank of Black parents, the fraction with college
or post-graduate degrees in 2010, and the number of children—and the number of Black
children—under 18 living in the given tract with parents whose household income was
below the national median.
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Emulated sample-splitting Back

• We will rely on an emulated hold-out set for our first exercises
• Idea: add and subtract noise to estimates → independent noised-up estimates ∼

sample splitting the microdata
• For (Yi, σi, θi), let W ∼ N (0, 1). Observe that[

Y1i

Y2i

]
=

[
Yi + cσiW

Yi − 1
cσiW

]
| θi, σi ∼ N

([
θi

θi

]
,

[
(1 + c2)σ2

i 0

0 (1 + 1/c2)σ2
i

])
• Observe that unbiased loss estimators and associated standard errors are available

E

[
n∑

i=1

δi(Y1,1:n)Y2i | θ1:n, Y1,1:n

]
=

n∑
i=1

δi(Y1,1:n)θi

Var

(
n∑

i=1

δi(Y1,1:n)Y2i | θ1:n, Y1,1:n

)
=

n∑
i=1

δi(Y1,1:n)σ
2
2i

• Here, we will emulate a 90-10 split 62



Calibrated simulation Back

• Regress raw Ỹi on tract-level covariates Xi to obtain Yi = X ′
iβ + Yi

• Estimate m(σ) = E[Yi | σ] and s2(σ) = Var(Yi | σ)− σ2

• Take Zi = (Yi −m(σ))/s(σ)

• Estimate G1, . . . , G20 via NPMLE for each vingtile of σi
• The sampling process for new observations is:

→ Sample τ∗i from one of the estimated Gk ’s, depending on σi

→ Set θ∗i = τ∗i s(σi) +m(σi)

→ Sample Y ∗
i = θ∗i +N (0, σ2

i )

→ Set Ỹ ∗
i = Y ∗

i +X ′
iβ

→ Return (Ỹ ∗
i , Xi, σi) as the new data
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Why this particular method? Back

• Many potential models of the joint distribution of (θi, σi): Among them,
→ CLOSE is particularly computationally tractable (∼5 seconds with 10,000 estimates)
→ Takes advantage of computational and theoretical results in the θi y σi case, since NPMLE

is the state-of-the-art under prior independence (Koenker and Mizera, 2014; Jiang and Zhang, 2009;

Jiang, 2020; Soloff, Guntuboyina, and Sen, 2021)

→ Most flexible in the class of “transform data then apply NPMLE”

• Even when the conditional location-scale assumption fails, CLOSE enjoys a certain
degree of robustness (worst-case Bayes risk over choices of shape G(i) within a finite
multiple of minimax Bayes risk) Robustness

• Empirical results do not impose location-scale assumption, and CLOSE appears to
perform well

64



Tradeoff between accurate targeting and estimation noise Back

0.5 0.0 0.5 1.0 1.5 2.0
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Independent Gaussian
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Poorer places and places with more minorities tend to be less mobile
Back
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NPMLE shrinkage Back
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MSE results from simulation (complete) Back
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Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Column median

-4 25 49 50 85 88 91 91 91

55 60 66 66 87 90 94 95 95

30 61 87 87 82 88 93 94 93

63 69 74 75 89 92 93 94 95

32 54 86 87 83 86 93 93 94

-160 9 67 67 57 81 91 93 93

31 51 65 65 75 80 94 97 95

-6 24 93 95 46 53 95 97 97

23 46 71 72 70 76 90 94 94

-8 21 94 96 37 45 95 97 97

-5 32 68 68 51 59 88 95 91

61 72 90 96 74 81 91 93 97

42 51 94 95 48 52 96 98 97

43 53 92 96 60 64 93 95 98

25 42 90 90 42 49 96 99 96

30 51 86 87 70 80 93 95 95

What % of Naive-to-Oracle MSE gain do we capture?
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