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Abstract. This paper connects the literature on demand estimation to the literature

on causal inference by interpreting nonparametric structural assumptions as restric-

tions on counterfactual outcomes. It offers nontrivial and equivalent restatements

of key demand estimation assumptions in the Neyman–Rubin potential outcomes

model, for both settings with market-level data (Berry and Haile, 2014) and settings

with demographic-specific market shares (Berry and Haile, 2024). This exercise helps

bridge the literatures on structural estimation and on causal inference by separating

notational and linguistic differences from substantive ones.
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1. Introduction

This paper translates key identification results for demand estimation to the Neyman–

Rubin potential outcomes model. We show an equivalent formulation, in terms of

potential outcomes, of the key conditions for both settings with market-level data

(Berry and Haile, 2014) and settings with individual micro-data (Berry and Haile,

2024). In the demand estimation context, potential outcomes encode counterfactual

market outcomes, and treatments are conditions of the market (typically prices and

characteristics) whose causal effects we would like to learn from existing data.

In our reformulation, identification results in both market- and micro-data settings

first assume that the treatment effect of certain market-level interventions x are latently

purgeable, meaning that there exists some latent transformation of outcomes h, with

H = h(Y, x), such that x has no causal effect on H whatsoever. Second, identification

results with market-level data assumes that, in addition, there is some focal treatment w

which has homogeneous and linear effects on the latently transformed outcome h(Y, x).

Identification results with micro-data, on the other hand, do not require such a focal

treatment; instead, they assume the latently transformed demographic-specific market

shares are almost surely parallel (as functions of the demographic variables z). This

last assumption is an individualized version of parallel trends assumption in panel data

causal inference settings.

Our reformulation is nontrivial in the sense that it does not simply declare that the

potential outcomes are generated from the corresponding structural model. Instead,

the reformulation takes counterfactual outcomes as primitives and makes restrictions

in terms of these outcomes directly. The equivalence implies that we can represent the

structural errors in the corresponding structural models in terms of these primitives.

These equivalence results are in the spirit of Vytlacil (2002), who shows an equiva-

lence between monotonicity assumptions à la Imbens and Angrist (1994) and structural

selection models (Heckman, 1976). They are also in the vein of Angrist et al. (2000)

applied to state-of-the-art models of markets with multiple goods. Similar to Vyt-

lacil (2002), we show that structural modeling and potential outcomes—in the context

of demand estimation—are mainly cultural and notational differences. Substantively,

structural assumptions can be equivalently formulated as restrictions on potential out-

comes and treatment effects, and structural models may motivate such restrictions

(and vice versa).

Our results help bridge the “two cultures,” borrowing a phrase from Breiman (2001),

of structural econometrics and causal inference. Demand estimation is a foundational
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exercise in many quantitive structural studies, not only within industrial organization,

but more recently in other fields like labor, crime, political economy, and finance as well

(Card, 2022; Humphries et al.; Longuet-Marx, 2024; Egan et al., 2021). Likewise, the

Neyman–Rubin causal inference literature is an influential paradigm across many fields

in economics (Goldsmith-Pinkham, 2024; Currie et al., 2020; Conlon and Mortimer,

2021). Our exercise reinforces that these two languages have the same capacity of

describing economic phenomena. We hope translating between the two is useful for

researchers—whose ranks are increasingly numerous—needing fluency in both cultures.

Notwithstanding the equivalence—and just like human languages—the two lan-

guages are stylistically different in terms of what each natively thinks of as primitives

versus derived quantities. At risk of oversimplification, structural modeling thinks of

outcomes as generated by latent and primitive shocks. Potential outcomes models in-

stead treat the counterfactual outcomes as primitives and impose restrictions directly;

latent variables are then certain transformations of potential outcomes resulting from

the restrictions.

Because of this stylistic difference, structural models appear to be a more native

tongue for economic theory, and potential outcomes appear better suited to articulate

model misspecification. As a result, we argue that our reformulation sheds light on

the restrictions imposed by structural demand models in order to extrapolate coun-

terfactuals, which may lead to informative sensitivity analyses. For the setting with

market-level data, we additionally connect our exercise to Andrews et al. (forthcom-

ing): We derive conditions under which the nonparametric demand model in Berry and

Haile (2014) is misspecified but nevertheless satisfies what Andrews et al. (forthcoming)

call causally correct specification.

Section 2 contains our results in the setting where the econometrician observes

market-level data (Berry and Haile, 2014). Section 3 contains our results in the setting

where market shares by demographic subgroup are additionally observed (Berry and

Haile, 2024). In each section, we start from a potential outcomes setup. We describe

equivalent restrictions on potential outcomes; we then illustrate the identification ar-

gument in Berry and Haile (2014, 2024) in terms of the equivalent assumptions. Lastly,

we show formally that our restrictions are equivalent to conditions imposed or implied

by Berry and Haile (2014, 2024). For settings with market-level data, Section 2.5

additionally connects our formulation to Andrews et al. (forthcoming).
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2. Market-level outcomes

2.1. Purgeable effects and latent homogeneity. We begin by considering the po-

tential outcomes model for multiple treatments and a scalar outcome. In a demand

context, this corresponds to markets with a single inside option. This is simply to ease

exposition: The key elements easily generalize—as we shall—to markets with multiple

inside options.

We will refer to observation units as “markets,” but the same restrictions on potential

outcomes model can apply to other contexts. Consider market counterfactuals drawn

from a population P ∗. A randomly drawn market is associated with potential outcomes

Y (w, x). The outcomes respond to a scalar focal treatment w ∈ W ⊂ R and an auxiliary

treatment x ∈ X . For concreteness, w represents a special type of characteristics that

Berry and Haile (2014) denotes with x(1), and x represents other characteristics and

prices.

The potential outcome Y (w, x) encodes what happens to a particular market when

the treatments are counterfactually set to some value (w, x). The potential outcomes

are random, representing market-level heterogeneity in counterfactual outcomes. We

assume that

(Y (·, ·),W,X) ∼ P ∗.

As is standard, the observed outcome Y is equal to the potential outcome evaluated

at the observed values of the treatments Y = Y (W,X). This induces a distribution P

over the observed variables:

(Y,W,X) ∼ P.

Suppose that (W,X) are randomly assigned, i.e., (W,X) y Y (·, ·). Without addi-

tional assumptions, we can already identify the average structural function (w, x) 7→
E[Y (w, x)], representing counterfactual outcomes averaged over the population of mar-

kets. However, it is possible that we would like to predict individual counterfactual

outcomes—that is, we would like the data to inform potential outcomes Y (w, x) them-

selves. Section 2.4 in Berry and Haile (2021) makes a strong case that certain policy

counterfactuals are really about particular individual markets, and average counterfac-

tual outcomes over many markets—even markets with similar observables—are insuf-

ficient.

Formally, identification of the potential outcome Y (w, x) means computing it from

the observed outcome Y and the distribution of observable information P . Prediction

of individual counterfactual outcomes is typically deemed too ambitious in the causal
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inference literature (since doing so would solve the fundamental problem of causal

inference), but it is notably the objective in, e.g., the synthetic control literature.

To do so, we have to entertain stronger restrictions on Y (w, x). The following is

one set of restrictions that render Y (w, x) identifiable. Formally, we posit P ∗ ∈ P∗,

delineated by the following assumptions.1

Assumption 2.1 (Purgeable effect in x). For every P ∗ ∈ P∗, there exists some (mea-

surable) function h(y, x) = hP ∗(y, x), invertible in y, such that x 7→ h(Y (w, x), x) is

constant almost surely: For every w ∈ W ,

h(Y (w, x1), x1)− h(Y (w, x2), x2) = 0 for every x1, x2 ∈ X P ∗-almost surely.

Intuitively, Assumption 2.1 states that the effect of the auxiliary treatment x is

purgeable: It can be transformed away with some unknown mapping h that preserves

information in Y . If we define the potential outcome H(w, x) ≡ h(Y (w, x), x), then x

has no treatment effect whatsoever—in the sense of Fisher’s (1935) sharp null—on H.

This assumption would trivially hold if one could define h that destroys variation in

Y . For this reason, we require h to be invertible in y.

The next assumption additionally imposes that the treatment effect of w on H(w) =

H(w, x) is constant, linear, and nonzero.

Assumption 2.2 (Latent constant linear treatment effects in w). For each member of

P∗, for h that satisfy Assumption 2.1, the effect of w on h(Y (w, x), x) is constant, linear,

and nonzero in w: There exists some bP ∗ ̸= 0 such that, for all x ∈ X , w1, w0 ∈ W ,

h(Y (w1, x), x)− h(Y (w0, x), x) = bP ∗(w1 − w0) P ∗-almost surely.

By redefining h if necessary, we can choose bP ∗ = 1.

Constant treatment effects are frequently criticized as a strong assumption in the

causal inference literature (e.g., in Chen and Roth, 2024; Mogstad and Torgovitsky,

2024). That said, such restrictions are also routinely imposed in applied work (e.g.

Abdulkadıroğlu et al., 2022).2 Since the function h is unknown and allowed to vary

with P ∗, Assumption 2.2 is a weaker assumption than constant (linear) treatment

effects.
1For simplicity, assume that all members of P∗ induce distributions P that share the same support
and are mutually absolutely continuous with each other.
2The results of Blandhol et al. (2022) suggest that the causal interpretation of two-stage least-squares
with covariates is often difficult absent imposing homogeneous treatment effects. As a result, whether
or not intended, empirical work using these methods in such settings implicitly impose effect homo-
geneity.
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Moreover, if the goal is to identify individual counterfactual outcomes Y (w, x), con-

stant treatment effects assumptions are unavoidable. If we could point-identify unit-

level counterfactual outcomes, then there necessarily is a mapping C—exactly what we

get out of a point-identification argument—such that the counterfactual outcome is

deterministically related to the observed data (Y,W,X) through C:

Y (w, x) = C(w, x; (Y,W,X);P ) P ∗-almost surely.

One could view the above display as a general form of effect homogeneity, since the map-

ping C does not depend on unit-level unobservables U , and deterministically links the

observed outcome Y to the counterfactual outcomes Y (w, x). Thus, effect homogeneity

is intrinsic to forecasting individual-level counterfactual outcomes, and Assumption 2.2

puts some additional structure beyond this minimal requirement.

Assumptions 2.1 and 2.2 can be strengthened so that the distinction between w and

x disappears: We may be willing to impose that effects are constant and linear in both

(w, x) for a latent transformation, assuming X ⊂ Rk:

gP ∗(Y (w1, x1))− gP ∗(Y (w2, x2)) = bP ∗(w1 − w2) + c′P ∗(x1 − x2) bP ∗ ̸= 0.

In this case, Assumptions 2.1 and 2.2 are satisfied with the choice h(y, x) = gP ∗(y) −
c′P ∗x.

Under Assumptions 2.1 and 2.2, we can write Y (w, x) in the following form:

h(Y (w1, x1), x1)− h(Y (w0, x0), x0) = h(Y (w, x0), x0)− h(Y (w0, x0), x0)

(Assumption 2.1)

= w − w0. (1)

=⇒ Y (w, x) = h−1 (w + h(Y (W,X), X)−W,x) (2)

Thus, if h is identifiable from P up to a level shift, then we can extrapolate to all

potential outcomes Y (w, x) from the observed outcome Y (W,X).

2.2. Identification. The identification of h depends on assumptions on treatment

assignment or availability of randomly assigned instruments. The demand estimation

literature often imposes the following treatment/design-based assumption

Assumption 2.3. (1) The focal treatment W is randomly assigned W y Y (·, ·).
(2) There is a set of randomly assigned instruments Z for the auxiliary treatments

X, which may include members of X, and (W,Z) y Y (·, ·).
Finally, the instruments are assumed to satisfy a completeness assumption (Newey

and Powell, 2003), which says that the instruments (W,Z), in a sense, capture all
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relevant variation in (Y,X). In causal inference, completeness assumptions are invoked

in proximal inference (Tchetgen Tchetgen et al., 2024) and bridge function literatures

(Imbens et al., 2024).

Assumption 2.4. The joint distribution P of (Y,W,X,Z) is complete in the following

sense: No nonzero, integrable function g(y, x) satisfies EP [g(Y,X) | W,Z] = 0. The

function h in Assumption 2.1 is assumed to be integrable.

Proposition 2.1. Under Assumptions 2.1 to 2.4, h is identified up to a location shift.

By (2), Y (w, x) is identified from ((Y,W,X), P ).

Proof. Fix some w0, x0, Assumptions 2.1 and 2.2 imply that

h(Y,X) = (W − w0) + h(Y (w0, x0), x0).

Take conditional expectations under W,Z:

E[h(Y,X) | W,Z] = (W − w0) + E [h(Y (w0, x0), x0) | W,Z]

= (W − w0) + CP ∗ (Assumption 2.3)

for some constant CP ∗ = E[h(Y (w0, x0), x0)]. Consider the solutions f to the integral

equation

E[f(Y,X) | W,Z] = W − w0

Note that f(y, x) = h(y, x) − CP ∗ is a solution. By Assumption 2.4, it is the unique

solution. Thus h(·, ·) is identified up to a location shift. □

2.3. Equivalence in markets with one good. We follow the exposition in Section

5 of Berry and Haile (2021) and specialize to the case with a single inside good (in

their notation, J = 1). We will again partition the characteristics and the prices of

the good into W and X, where W is a special scalar characteristic whose existence is

implied by one of the assumptions in Berry and Haile (2014). X = (D,X2) contains

other characteristics as well as prices D.3 Berry and Haile (2021) represent market

shares Y as structural equations

Y = s(W,D,X2, ξ̃) ∈ (0, 1).

For identification, Berry and Haile (2014) impose economic assumptions that imply

the following conditions. We impose these as assumptions since they are key ingredients

in the identification argument, as outlined by Berry and Haile (2021).

3Berry and Haile (2021) use x(1) to denote W , x(2) to denote X2, and p to denote D.
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Assumption 2.5 (Linear index, Assumption 5.1 of Berry and Haile (2021)). For some

(W, ξ) such that δ = W + ξ and σ(·), we can reparametrize the structural equations

s(W,D,X2, ξ̃) = σ(δ,D,X2).

Assumption 2.6 (Invertible demand (5.12), Berry and Haile (2021)). The function

σ is invertible:

δ = σ−1(Y,D,X2).

Theorem 2.2. Assumptions 2.5 and 2.6 are equivalent to Assumptions 2.1 and 2.2.

This equivalence result shows that the key conditions imposed in Berry and Haile

(2014) can be reformulated as Assumptions 2.1 and 2.2. Subjected to these assump-

tions, with the additional assumptions of instruments and completeness, identification

of σ and ξ—equivalent to the identification of Y (w, x)—is obtained through Proposi-

tion 2.1.

Proof. We first show that Assumptions 2.5 and 2.6 imply Assumptions 2.1 and 2.2. It

suffices to pick some h. By Assumption 2.6, we can choose h(y, x) = σ−1(y, d, x2) since

X = (D,X2). This function is invertible by assumption. Moreover,

h(Y (w, x), x)− h(Y (w′, x′), x′) = w − w′

by Assumption 2.5. This proves both Assumptions 2.1 and 2.2 by setting (w,w′, x, x′)

appropriately.

For the other direction, under Assumptions 2.1 and 2.2, by (2), we know that for

any choice (w0, x0) in the support,

h(s(w, x, ξ̃), x) = w−w0 + h(s(w0, x0, ξ̃), x0)︸ ︷︷ ︸
ξ

.

For this choice of ξ, we have that almost surely s(w, x, ξ̃) = h−1(w + ξ, x). Thus

Assumption 2.5 is satisfied by choosing σ(δ, d, x2) = h−1(δ, (d, x2)). The assumption

that h is invertible in (2) implies Assumption 2.6. □

2.4. Markets with multiple inside options. To generalize to vector-valued out-

comes, we next state the J-dimensional analogue of Assumptions 2.1 and 2.2. Here,

the focal treatment would also be J dimensional (W ⊂ RJ).

Assumption 2.7 (Purgeable effects and latent constant linear effects). For each mem-

ber of P∗, there exists some invertible function h = h∗
P and invertible J × J matrix
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BP ∗ , normalized to IJ , such that for all w1, w2, x1, x2,

hP ∗(Y (w1, x1), x1)− hP ∗(Y (w2, x2), x2) = w1 − w2.

Assumption 2.7 is the J-dimensional analogue to Assumptions 2.1 and 2.2. Since we

restrict effects to be linear, it is reasonable to consider J focal treatments in order to

capture the effect on J-dimensional outcomes.

By an analogous argument, this assumption is equivalent to the key conditions in

Berry and Haile (2014) for the general case with J inside goods. We state the result

for completeness. Now, let W = (W1, . . . ,WJ) ∈ RJ denote a special characteristic,

one for each good. Let X = (Dj, Xj)
J
j=1 denote the other characteristics and prices,

and assume the structural model for the market shares of each of the J inside options

Y = (Y1, . . . , YJ) = s(W,X, ξ̃).

Assumption 2.8 (Linear index). For some δ = (δ1, . . . , δJ) = W + ξ, we can write

s(W,X, ξ̃) = σ(δ,D,X2).

Assumption 2.9 (Invertibility). The function σ admits an inverse where

δ = σ−1(X, Y,D).

Completely analogous to Theorem 2.2, we have the following theorem.

Theorem 2.3. Assumptions 2.8 and 2.9 are equivalent to Assumption 2.7.

2.5. Misspecification and identification. The formulation Assumptions 2.1 and 2.2

allows close connections to the literature on misspecification of structural models. Po-

tential outcomes models are natural for studying misspecification, as they do not pre-

sume the existence of special latent variables and take the counterfactual outcomes

themselves as model primitives. The potential outcomes model—possibly before im-

posing Assumptions 2.1 and 2.2—is what Andrews et al. (forthcoming) term a nesting

model. This subsection details the connection to their results. In particular, we de-

rive conditions under which Assumptions 2.1 and 2.2 may be misspecified yet correctly

capture the right counterfactual outcomes in a particular treatment (e.g., prices). A

byproduct of this analysis is an interesting tradeoff between model flexibility—so as to

guard against misspecification—and identification under misspecification.

Consider a nesting model P∗∗, which may not obey Assumptions 2.1 and 2.2, from

which P ∗∗ is chosen by Nature. Suppose we can partition X = (D,X2) for some

treatment of interest D (typically price). Andrews et al. (forthcoming) define a notion

called causally correct specification of a structural model P∗. Loosely speaking, a
9



structural model P∗ ⊂ P∗∗ is causally correctly specified if, for every P ∗∗, there is

some member P ∗ ∈ P∗ under which all partial derivatives of ∂
∂d
Y (w, d, x2) under P

∗∗

are reproduced by corresponding partial derivatives under P ∗.4 The following definition

makes this precise, defining causal correct specification using the representation in

Proposition 2 in Andrews et al. (forthcoming) directly.

Definition 2.4 (Causally correct specification). Consider a structural model P∗ under

which potential outcomes take the form

Ymodel(w, d, x2) = YP ∗ (w, d, x2, ξ) P ∗-almost surely

for ξ ∈ RJ . We say that P∗ is causally correctly specified with respect to d for P∗∗ if,

for every member P ∗∗ ∈ P∗∗, the potential outcomes have the following representation:

For some P ∗ ∈ P∗, some function L and some choices of unobservable random variables

(ξ, V ),

Y (w, d, x) = YP ∗ (w, d, x, ξ + L(w, x, V )) P ∗∗-almost surely

where the choice of ξ is such that YP ∗(w, d, x, ξ) is distributed according to P ∗.

When P∗ satisfies Definition 2.4, for some member P ∗, its model-implied partial

derivative in d matches all corresponding partial derivatives of Y (w, d, x), assuming

both sets of derivatives exist.

A natural question is when P∗ defined by Assumptions 2.1 and 2.2 is causally cor-

rectly specified. The answer is when Nature’s model P∗∗ satisfies a weaker version of

purgeable effects (Assumption 2.1), where we only require effects be purgeable in d.

Assumption 2.10 (Purgeable effects in d). For all P ∗∗ ∈ P∗∗, there exists some

measurable h∗∗(y, d, x2) (which does not need to depend on x2), invertible in y, such

that, for all w, x2, d1, d2 in their respective supports,

h∗∗(Y (w, d1, x2), d1, x2)− h∗∗(Y (w, d2, x2), d2, x2) = 0 P ∗∗-almost surely.

Proposition 2.5. Let P∗ be defined by Assumptions 2.1 and 2.2.5 Then P∗ is causally

correctly specified with respect to d for P∗∗ satisfying Assumption 2.10.

4This assumption simply imposes that a given structural model P∗ is rich enough to model the causal
effect of d correctly, yet P ∗ may not equal P ∗∗, nor is it necessarily identified from the data.
5This means that for any invertible h, there exists some member P ∗ ∈ P∗ that obeys Assumptions 2.1
and 2.2 with respect to h.
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Proof. Given P ∗∗ and h∗∗ by Assumption 2.10, choose the member of P∗ under which

h = h∗∗. Fix some x0, w0, the potential outcomes under the model P∗ can be repre-

sented as

Ymodel(w, x) = h−1

w + h(Y (w0, x0), x0)− w0︸ ︷︷ ︸
ξ

, x

 ≡ Yh(w, x, ξ).

Under P∗∗,

h(Y (w, d, x2), d, x2)− h(Y (w0, d0, x20), d0, x20)

= h(Y (w, d0, x2), d0, x2)− h(Y (w0, d0, x20), d0, x20) (Assumption 2.10)

Define the last line on the display as

L(w, x2, Y (·, d0, ·)︸ ︷︷ ︸
V

)− w0.

Thus,

h(Y (w, d, x2), d, x2) = ξ + L(w, x2, V ) =⇒ Y (w, d, x2) = Yh(w, x, ξ + L(w, x2, V )).

This concludes the proof. □

Remark 2.6 (Tradeoff in misspecification-robustness and identification). This analy-

sis highlights an interesting tradeoff between flexible parametrization—making causal

correctness more plausible—and identification. Under models that impose Assump-

tions 2.1 and 2.2, researchers typically exploit the moment condition (e.g., in Proposi-

tion 2.1)

E [h(Y,D,X2)−W | Z,W ] ≡ E[ξ | Z,W ] = 0

for estimation.6 Equivalently, for any set of test functions T (Z,W ), we may exploit

the moment condition E[(h(Y,D,X2)−W )T (Z,W )] = 0 to estimate h(·).
Because of the possibility that, even assuming causally correct specification, there is

a misspecified component L(W,X2, V ),

E [h(Y,D,X2)−W | Z,W ] = E[L(W,X2, V ) | Z,W ] ̸= 0,

Andrews et al. (forthcoming) recommend recentering instruments (Borusyak and Hull,

2023) to purge them from accidentally loading on (W,X2). Namely, restricting to

T̃ (Z,W ) such that E[T̃ (Z,W ) | W,X2] = 0, Andrews et al. (forthcoming) recommends

6We can normalize E[ξ] = 0 since we only need to estimate h up to a location shift.
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exploiting the following moment conditions, valid if Z is an external instrument (as-

suming Z y (V, Y (·, ·)) | X):

E[(h(Y,D,X2)−W )T̃ (Z,W )] = E[E[L(W,X2, V ) | W,X2] · T̃ (Z,W )] = 0.

In parametric demand models (i.e., h = h(·; θ) for some Euclidean θ), the variation

in T̃ (Z,W ) orthogonal to (W,X2) is potentially sufficient for identifying the parameter

h. However, for nonparametric demand models, even though the model is causally

correctly specified, the parameter h that reproduces all causal summaries in d may not

be pinned down by the data, because variation in (W,X2) may be necessary to identify h

but are contaminated by L(W,X2).
7 When we lack identification, Deaner (forthcoming)

shows that, unfortunately, even if the misspecification E [L(W,X2, V ) | Z,W ] is known

to be small, the ill-posedness of nonparametric instrumental variables can nonetheless

result in large identified sets for h. ■

3. Markets with micro-data

3.1. Latent purgeability and latent parallel trends. For micro-data settings (Berry

and Haile, 2024), consider a set of market-level interventions x (e.g., prices). Here, let w

denote observable demographics. The potential outcome is a random function mapping

demographics to their specific market shares:

Y (x) : W → (0, 1).

We likewise keep the exposition with a single inside option. Extension to J options

is straightforward. We denote evaluation of this potential outcome at a value w as

Y (x)[w], which is the market share of demographic w for a randomly drawn market—

were the market to receive intervention x exogenously. Berry and Haile (2024) term

this object the conditional demand system.8

7To see this, suppose
EP [h(Y,D,X2)−W − L(W,X2, V ) | Z,W ] = 0 (3)

is the only restriction on h for an unknown L and unknown V . Suppose there exists some choice of
L0, V and h̃(y, d, x2), where h̃ depends nontrivially on d, such that

E[h̃(Y,D,X2) | Z,W ] = E[L0(W,X2, V ) | Z,W ].

Then for any given h0, (h, L) = (h0, 0) and (h, L) = (h0 + h̃, L0) are observationally equivalent in the

sense that they both satisfy (3). Appendix A.1 shows an example in which such a choice of (h̃, L0)
can be made.
8Unfortunately, to keep notation unified with the previous section, this notation differs from Berry
and Haile (2024). What we call x is meant to capture what Berry and Haile (2024) denote as price
p. What we call w is z in Berry and Haile (2024). Finally, Berry and Haile (2024) additionally has
a market-level variable Xt that denotes other market interventions or characteristics that may or
may not be exogenous. This variable is essentially conditioned upon throughout their identification
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Compared to Y (x,w), this notation captures the fact that Y (x)[w1]− Y (x)[w0] are

not causal comparisons in w.9 This formulation has some similarities to panel data (as

pointed out in Berry and Haile, 2021), since we may view panel data as a setting in

which W = {1, . . . , T} is the time indices, and Y (x)[t] as the time-t potential outcome.

As before, the latent population is (Y (·)[·], X) ∼ P ∗ ∈ P∗, from which we observe

(Y [·], X) ∼ P where Y = Y (X).

Here, we impose the following assumptions: The first is an analogue of Assump-

tion 2.1.

Assumption 3.1 (Latent purgeable effects, micro-data). For all P ∗ ∈ P∗, there exists

a measurable function h = hP ∗(y, x), invertible in y such that for all w ∈ W and all

x1, x2 ∈ X ,

h(Y (x1)[w], x1)− h(Y (x2)[w], x2) = 0 P ∗-almost surely.

The second replaces Assumption 2.2 with a parallel-trends analogue.10

Assumption 3.2 (Latent individual parallel trends). There exists a fixed w0 ∈ W an

invertible and differentiable function g(w) = gP ∗(w) with g′(w0) ̸= 0 such that the map

h in Assumption 3.1 additionally satisfies, for all x ∈ X and w ∈ W

h(Y (x)[w], x)− h(Y (x)[w0], x) = g(w)− g(w0) P ∗-almost surely.

Redefining h if necessary, we may normalize g′(w0) = 1 and g(w0) = 0.

Instead of assuming that there is some focal treatment whose effect is homogeneous

and linear, Assumption 3.2 imposes that the random function

w 7→ h(Y (x)[w], x) (4)

has parallel sample paths equal to g(w) + h(Y (x0)[w0], x0). When we think of w as a

time period, and of Hw(x) = h(Y (x)[w], x) as a transformed potential outcome path,

this assumption is an individual version of parallel trends on Hw(x). It imposes that

differences Hw1(x)−Hw2(x) are not only mean independent of other variables—which

argument for what they term the “conditional demand system”, which considers counterfactuals in
which Xt is fixed at the observed values. We suppress Xt in our exposition. If there are no Xt, this
setup corresponds to the demand system in Berry and Haile’s (2024) terminology.
9Consider the following example: In the Cambridge, MA tourism market in July 2026, those who have
stayed in the Royal Sonesta in July 2025 (w) are very likely to choose the Royal Sonesta again in July
2026 (Y (x)[w] is high), because they are likely attendees to the NBER Summer Institute meetings.
However, had we exogenously assigned a random individual visiting Cambridge, MA in 2025 to the
Royal Sonesta, she would not return with equal propensity.
10The connection to difference-in-differences codifies some existing intuition. Steve Berry also made
references to difference-in-differences for this argument during his seminar at Stanford in March 2025,
despite the terminology not featuring in Berry and Haile (2024).
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is imposed by typical parallel trends—but are identical and nonrandom. Despite this

strong parallel trends assumption, positing that it holds under an unknown transfor-

mation h(·, x) does provide considerable flexibility.

The J dimensional analogue of Assumptions 3.1 and 3.2 simply imposes that h, g, w

are all J-dimensional and normalizes the Jacobian d
dw
g(w0) = IJ .

3.2. Identification under latent purgeability and latent parallel trends. As

before, Assumptions 3.1 and 3.2 allows us to write

Y (x)[w] = h−1 (h(Y (X)[w0], X) + g(w), x) (5)

Upon identification of h(·, ·) (up to a level shift) and g(·), we would be able to predict

Y (x)[w] at counterfactual x values.

Assumptions 3.1 and 3.2 are in fact sufficiently restrictive to allow for identification

of g(·) and of h(·, x), just by analyzing the joint distribution (Y [·], X) ∼ P—after

imposing a few regularity assumptions. Notably, this identification argument relies

solely on the outcome model imposed, and does not rely on assumptions about the

random assignment of X or the availability of randomly assigned instruments. To

show this identification, subjected to our equivalence result shortly, one could follow

Berry and Haile’s (2024) argument in their Lemma 2, Lemma 3, and Corollary 1, as

well as Berry and Haile (2021) Section 7.2 for a simplified presentation.

We briefly present an informal version of this argument that includes the key insight,

possibly imposing stronger regularity assumptions. Note that Assumptions 3.1 and 3.2

impose that for all x,

g(w)− g(w′) = h(Y (x)[w], x)− h(Y (x)[w′], x).

Since both g and h are invertible, w ̸= w′ implies Y (x)[w] ̸= Y (x)[w′]. Hence, we

can consider the inverse potential outcomes map W (x)[y]. Observing the distribution

of Y (X)[·] is equivalent to observing the inverse W (X)[·]. Now, suppose (i) y 7→
W (x)[y] is continuously differentiable for every y, (ii) g, g−1 are uniformly continuous

and continuously differentiable, and (iii) h(y,X) is differentiable in y with a nonzero

partial derivative for almost all y and almost every X.

Then under Assumptions 3.1 and 3.2, for a fixed y, the distribution of W (X)[y] is

known given P . Moreover, this distribution relates to g−1 and h by

W (X)[y] = g−1(h(Y (X)[W (X)[y]], X)︸ ︷︷ ︸
h(y,X)

−h(Y (X)[w0], X))

= g−1(h(y,X)− h(Y [w0], X)).
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Differentiating both sides in y,

W (X)′[y] =
1

g′ (g−1(h(y,X)− h(Y [w0], X)))

∂h(y,X)

∂y
=

1

g′(W (X)[y])

∂h(y,X)

∂y
(6)

Condition on a value of X and consider the distributionW (X)[y] | X. Fix y at which
∂h(y,X)

∂y
is nonzero. At this value of y, for values w1, w2 in the support of W (X)[y] | X

with corresponding values w′
1, w

′
2 of W (X)′[y], then

g′(w1)

g′(w2)
=

w′
2

w′
1

(7)

is identified, since the right-hand side is known. This argument means that the ratio

in g′(·) is identified for all pairs w1, w2 that are in the support of W (X)[y] | X for some

values of X and y.

As long as we can connect an arbitrary value w to the normalized value w0 through a

chain of such pairs ((w,w1) → (w1, w2) → · · · → (wn−1, wn) → (wn, w0)), (7) allows us

to identify g(w), since we normalized g′(w0) = 0 and g(w0) = 1. Identifying g(·) allows
us to identify hy(y, x) ≡ ∂h(y,x)

∂y
for x values in the support of X by (6). Integrating

hy(y, x) in y identifies differences h(y1, x)−h(y2, x). We state these identification results

as high-level assumptions directly, but they can be obtained by imposing lower-level

assumptions on top of Assumptions 2.1 and 3.2.

Assumption 3.3 (Outcome-modeling identification). Assumptions 2.1 and 3.2 hold.

The function g(·) in Assumption 3.2 is known. The function h in Assumption 2.1 has

known dependence on y: That is, for all y, y1, x,
∂
∂y
h(y, x) is known, and h(y1, x) −

h(y, x) is known. The functions h, g are integrable.

The final setup of the identification—solely to identify baseline values x 7→ h(y0, x)—

again relies on randomly assigned instruments which are sufficiently strong in the sense

of Newey and Powell (2003).

Assumption 3.4. There is some randomly assigned instrument Z y Y (·)[·]. It satis-
fies a completeness assumption for all P : No nonzero integrable function q(X) satisfies

EP [q(X) | Z] = 0.

Proposition 3.1 (Berry and Haile (2024), Lemma 4 and Theorem 1). Under Assump-

tions 3.3 and 3.4, h(y, x) is identified up to a level shift, and g(w) is identified. By (5),

the counterfactuals Y (x)[w] are identified.

Proof. Fix some y0 in the support of Y under P and fix some value w. We note that

by Assumptions 3.1 and 3.2

g(w)− (h(Y [w], X)− h(y0, X)) = h(y0, X) + h(Y (x0)[w0], x0)
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The left-hand side is a known functionQ(w,X) by Assumption 3.3. By Assumption 3.4,

E [h(Y (x0)[w0], x0) | Z] = E [h(Y (x0)[w0], x0)] = CP ∗

is a constant. Thus, consider the integral equation

E[v(X) | Z] = 0.

The choice v(x) = h(y0, x)−Q(w, x)+CP ∗ solves the integral equation. Since it is the

only solution by Assumption 3.4, the distribution P identifies h(y0, x)−Q(w, x)+CP ∗ ,

which is equivalent to identifying h(y0, x) up to a level shift. By Assumption 3.3,

h(y, x) = (h(y, x)− h(y0, x)) + h(y0, x) is similarly identified up to a level shift. □

3.3. Equivalence. Berry and Haile (2024) impose the following core assumptions in

their Assumptions 1–3. We present them in our notation with slight modifications

reflecting their subsequent normalization.11 They write

Y (x)[w] = s(w, x, ξ)

Assumption 3.5 (Index). s(w, x, ξ) = σ(γ(w, ξ), x), where γ is J-dimensional, and

for all j, γj(w, ξ) = gj(w) + ξj. For some fixed w0, g(w0) = 0 and g(w0)
dw

= IJ .

Assumption 3.6 (Invertible demand). For all x ∈ X , σ(·, x) is injective on the support

of γ(w, ξ).

Assumption 3.7 (Injective index). For all ξ in its support, γ(·, ξ) is injective on W .

Like Section 2, our main result in this section proves that the formulations are

equivalent. The map σ and the quantity ξ are identified through the same argument

Proposition 3.1 that identfies Y (x)[w].

Theorem 3.2. Assumptions 3.5 to 3.7 are equivalent to (the J-dimensional analogues

of) Assumptions 3.1 and 3.2.

Proof. Without essential loss of generality, we show the equivalence for J = 1. Suppose

Assumptions 3.5 to 3.7 hold. Choose h(y, x) = σ−1(y, x), where σ−1 is such that in

Assumption 3.5

σ−1(s(w, x, ξ), x) = γ(w, x).

The existence of σ−1 is given by Assumption 3.6. Choose g(w) as in g(w) in Assump-

tion 3.5, which is invertible by Assumption 3.7 and normalized appropriately. Now,

11Relative to Assumption 1 in Berry and Haile (2014), Assumption 3.5 normalizes the index directly,
following their Section 2.5. Relative to their setting, we suppressed other market-level interventions
(their Xt) that may enter γ, doing so makes the normalization in their Section 2.3 unnecessary, which
we impose in Assumption 3.5 directly.
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given these choices,

h(Y (x)[w1], x1)− h(Y (x)[w0], x0) = (g(w1) + ξ)− (g(w0) + ξ) = g(w1)− g(w0)

choice almost surely. This proves both Assumptions 3.1 and 3.2 by choosing w1, x1, w0, x0

appropriately.

For the reverse direction, let us impose Assumptions 3.1 and 3.2. By an analogue of

(5), we can write

Y (x)[w] = h−1 (g(w) + h(Y (x0)[w0], x0), x) .

Set ξ = h(Y (x0)[w0], x0), γ(w, ξ) = g(w)+ ξ, and σ(·, x) = h−1(·, x). These choices are
appropriately invertible by assumption. This proves Assumptions 3.5 to 3.7. □

4. Conclusion

This paper connects fundamental results in demand estimation (Berry and Haile,

2014, 2024) to the Neyman–Rubin potential outcomes model. We find that the index

and invertibility restrictions in Berry and Haile (2014, 2024) can be equivalently stated

and interpreted as (i) certain causal effects may be purged by transforming the outcome

and (ii) the transformed outcome satisfies either a form of homogeneous linear effects or

a form of individual parallel trends. While strong—implying homogeneous treatment

effects—these assumptions retain considerable flexibility because the transformations

are latent. This reformulation is nontrivial in the sense that it makes no reference

to latent variables beyond the potential outcomes themselves. We present analogues

of identification arguments—largely following Berry and Haile (2014, 2024)—in terms

of these equivalent assumptions. We also derive conditions under which Berry and

Haile’s (2014) demand model satisfies causally correct specification (Andrews et al.,

forthcoming).
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Appendix A. Miscellany

A.1. Causally correct specification. Here we provide an example in which there

exists a nontrivial-in-d h̃(d) such that

E[h̃(D) | Z,W ] = E[L0(X2) | Z,W ]
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for some choice of L0. Suppose Z > 0,W > 0 and

(D,X2) | (Z,W ) ∼ N

([
ZW

W

]
,Σ

)
is jointly Gaussian. First note that this choice does not sacrifice completeness since

the conditional likelihood is linear exponential family, (D,X2) is complete sufficient for

µ(Z,W ) = (ZW,W ), which ranges over an open set in R2.

Next, observe that by construction

E[D −WX2 | Z,W ] = 0

Let h̃(d) = d and let L(w, x2) = wx2. This choice satisfies the construction in Foot-

note 7
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