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Abstract. Empirical Bayes shrinkage methods usually maintain a prior independence as-

sumption: The unknown parameters of interest are independent from the known standard

errors of the estimates. This assumption is often theoretically questionable and empirically

rejected. For one, the sample sizes associated with each estimate may select on or may

influence the underlying parameters of interest, thereby making standard errors predictive

of the unknown parameters. This paper instead models the conditional distribution of the

parameter given the standard errors as a flexibly parametrized family of distributions, lead-

ing to a family of methods that we call close. This paper establishes that (i) close is

rate-optimal for squared error Bayes regret, (ii) squared error regret control is sufficient for

an important class of economic decision problems, and (iii) close is worst-case robust when

our assumption on the conditional distribution is misspecified. Empirically, using close

leads to sizable gains for selecting high-mobility Census tracts targeting a variety of eco-

nomic mobility measures. Census tracts selected by close are substantially more mobile on

average than those selected by the standard shrinkage method. This additional improvement

is often multiple times the improvement of the standard shrinkage method over selection

without shrinkage.
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1. Introduction

Applied economists often use empirical Bayes methods to shrink noisy parameter esti-

mates, in hopes of accounting for the imprecision in the estimates and improving subsequent

policy decisions.1 The textbook empirical Bayes method assumes prior independence—that

the precisions of the noisy estimates do not predict the underlying unknown parameters.

However, prior independence is economically questionable and empirically rejected in many

contexts. This is frequently because sample sizes associated with the estimates either select

on or affect the underlying parameters, rendering the resulting standard errors highly pre-

dictive of the parameters.2 Inappropriately imposing prior independence can harm empirical

Bayes decisions, possibly even making them underperform decisions without using shrinkage.

Motivated by these concerns, this paper introduces empirical Bayes methods that relax prior

independence.

To be concrete, our primary empirical example (Bergman et al., 2023) computes empirical

Bayes posterior means for economic mobility estimates of low-income children3 published

in the Opportunity Atlas (Chetty et al., 2020). Here, prior independence assumes that the

1Empirical Bayes methods are appropriate whenever many parameters for heterogeneous populations are
estimated in tandem. For instance, value-added modeling, where the parameters are latent qualities for
different service providers (e.g. teachers, schools, colleges, insurance providers, etc.), is a common thread in
several literatures (Angrist et al., 2017; Mountjoy and Hickman, 2021; Chandra et al., 2016; Doyle et al.,
2017; Hull, 2018; Einav et al., 2022; Abaluck et al., 2021; Dimick et al., 2010). Our application (Bergman
et al., 2023) is in a literature on place-based effects, where the unknown parameters are latent features
of places (Chyn and Katz, 2021; Finkelstein et al., 2021; Chetty et al., 2020; Chetty and Hendren, 2018;
Diamond and Moretti, 2021; Baum-Snow and Han, 2019). Empirical Bayes methods are also applicable in
studies of discrimination (Kline et al., 2022, 2023; Rambachan, 2021; Egan et al., 2022; Arnold et al., 2022;
Montiel Olea et al., 2021), meta-analysis (Azevedo et al., 2020; Meager, 2022; Andrews and Kasy, 2019;
Elliott et al., 2022; Wernerfelt et al., 2022; DellaVigna and Linos, 2022; Abadie et al., 2023), and correlated
random effects in panel data (Chamberlain, 1984; Arellano and Bonhomme, 2009; Bonhomme et al., 2020;
Bonhomme and Manresa, 2015; Liu et al., 2020; Giacomini et al., 2023).
In terms of policy decisions driven by empirical Bayes posterior means, Gilraine et al. (2020) report that by
the end of 2017, 39 states require that teacher value-added measures—typically, empirical Bayes posterior
means of teacher performance—be incorporated into the teacher evaluation process.
2To see this, take value-added modeling as an example. The precision of value-added estimates is usually
a function of the number of customers associated with a service provider (e.g. number of students for a
teacher). It is possible that customers select into higher quality providers. It is also possible that congestion
effects render more popular service providers worse. These channels predict that the sample sizes for a
provider are associated with latent value-added, and the direction of association depends on the interplay of
the selection and congestion effects. Appendix A.5 outlines a formal discrete choice model to illustrate these
effects. Potential failure of prior independence is noted by, among others, Bruhn et al. (2022), Kline et al.
(2023), George et al. (2017), and Mehta (2019).
3Throughout this paper, measures of economic mobility are defined as certain average outcomes of children
from low-income households. There are various definitions of economic mobility provided by Chetty et al.
(2020), discussed later in the paper. They are all measures of economic outcomes for children from low-
income households (households at the 25th percentile of the national income distribution). One example is
the probability that a Black person have incomes in the top 20 percentiles, whose parents have household
incomes at the 25th percentile. As another example, Bergman et al. (2023) measure economic mobility as
the mean income rank of children growing up in households at the 25th income percentile.
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standard errors of these noisy mobility estimates do not predict true economic mobility. How-

ever, more upwardly mobile Census tracts tend to have fewer low-income children and hence

noisier estimates of economic mobility. Consequently, the standard errors of the estimates

and true economic mobility are positively correlated, violating prior independence.

Bergman et al. (2023) use empirical Bayes posterior means to select high-mobility Census

tracts, choosing those with high estimated posterior means. Using a validation procedure

that we develop, for a few measures of economic mobility where prior independence is severely

violated, we find that screening on conventional empirical Bayes posterior means selects less

economically mobile tracts, on average, than screening on the unshrunk estimates.4 In

contrast, screening on empirical Bayes posterior means computed by our method selects

substantially more mobile tracts.

To describe our method, let Yi be some noisy estimates for some parameters θi, with

standard errors σi, over heterogeneous populations i = 1, . . . , n. In our empirical application,

(Yi, σi) are published in the Opportunity Atlas for each Census tract i and are designed to

measure true economic mobility θi. Motivated by the central limit theorem applied to the

underlying micro-data, Yi is approximately Gaussian:

Yi | θi, σi ∼ N (θi, σ
2
i ) i = 1, . . . , n. (1.1)

If we knew the distribution of (θi, σi), then we can do no better than oracle Bayes deci-

sions, based on the posterior distribution θi | σi, Yi. Empirical Bayes emulates such optimal

decisions by estimating the oracle prior distribution of (θi, σi). Prior independence θi y σi

simplifies this estimation problem. However, empirical Bayes methods based on this assump-

tion can have poor performance when it fails to hold.

We relax prior independence by modeling the prior distribution θi | σi flexibly, detailed
in Section 2. We model θi | σi as a conditional location-scale family, controlled by σi-

dependent location and scale hyperparameters and a σi-independent shape hyperparameter.

Under this assumption, different values of the standard errors σi translate, compress, or

dilate the distribution of the parameters θi | σi, but the underlying shape of θi | σi does
not vary. This model subsumes prior independence as the special case where the unknown

location and scale parameters are constant functions of σi.

This conditional location-scale assumption leads naturally to a family of empirical Bayes

methods that we call close. Since the unknown prior distribution θi | σi is fully described

by its location, scale, and shape hyperparameters, close estimates these parameters flexibly

4Fortunately, for the measure of economic mobility (mean income rank pooling over all demographic groups
whose parents are at the 25th percentile of household income) used in Bergman et al. (2023), the violation
of prior independence is sufficiently mild, so that screening on these empirical Bayes posterior means still
outperforms screening on the raw estimates.
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and plugs the estimated parameters into downstream decision rules. Among different estima-

tion strategies for the hyperparameters, our preferred specification of close uses nonpara-

metric maximum likelihood (npmle, Kiefer and Wolfowitz, 1956; Koenker and Mizera, 2014)

to estimate the unknown shape of the prior distribution θi | σi. We find that close-npmle

inherits the favorable computational and theoretical properties of npmle documented in the

literature (Soloff et al., 2021; Jiang, 2020; Polyanskiy and Wu, 2020).

Section 3 provides three statistical guarantees for close-npmle. First and foremost,

close-npmle emulates the oracle as well as possible, at least in terms of squared error

loss. Specifically, Corollary 1 and Theorem 2 establish that close-npmle is minimax rate-

optimal—up to logarithmic factors and under the conditional location-scale assumptions—

for Bayes regret in squared error, a standard performance metric (Jiang and Zhang, 2009).

Bayes regret is the performance gap between close-npmle and oracle Bayes decisions made

with knowledge of the distribution of (θi, σi).

Second, our guarantee for squared error regret also controls the Bayes regret for two

ranking-related decision problems, including the problem of selecting high-mobility tracts

encountered by Bergman et al. (2023). Theorem 3 shows that the Bayes regret in squared

error dominates the Bayes regret for these decision problems. Thus, these ranking-related

problems are easier than squared error estimation, and our squared error regret result implies

upper bounds for the regrets of these problems.

Third, to assess robustness of close to the location-scale modeling assumption, Theorem 4

establishes that close-npmle is worst-case robust. Without imposing the location-scale

assumptions, for a population version of close-npmle, we show that its worst-case mean-

squared error is a bounded multiple of that of the minimax procedure. Since the minimax

procedure optimizes its worst-case risk, this result shows that close-npmle does not perform

exceedingly poorly even when the location-scale model is misspecified.

Since practitioners may want to assess how and whether close-npmle provides improve-

ments in specific applications, Section 4.3 produces an out-of-sample validation procedure by

extending the coupled bootstrap in Oliveira et al. (2021). If one had access to the micro-data,

one could split the data into training and testing samples, use one to compute decisions,

and use the other to evaluate them. Our validation procedure emulates this sample-splitting

without needing access to the underlying micro-data. It provides unbiased loss estimates

for any decision rules. In particular, this procedure allows practitioners to evaluate whether

close provides improvements for their setting by comparing loss estimates for close and

those for the standard shrinkage procedure.

To illustrate our method, Section 5 applies close to two empirical exercises, building on

Chetty et al. (2020) and Bergman et al. (2023). The first exercise is a calibrated Monte Carlo
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simulation, in which we have access to the true distribution of (θi, σi). We find that close-

npmle has mean-squared error (MSE) performance close to that of the oracle posterior,

uniformly across the 15 measures of economic mobility that we include. For all 15 measures,

close-npmle captures over 90% of possible MSE gains relative to no shrinkage, whereas

conventional shrinkage captures only 70% on average and as little as 40% for some measures.

The second exercise evaluates the out-of-sample performance of various procedures for

an economic policy problem. Bergman et al. (2023) use empirical Bayes procedures to

select high-mobility Census tracts in Seattle. We consider a version of their exercise with

different mobility measures, scaled up to the largest Commuting Zones in the United States.

We find that close-npmle selects more economically mobile tracts than the conventional

shrinkage method. These improvements are large relative to two benchmarks. First, they

are on median 3.2 times the value of basic empirical Bayes—that is, the improvements the

standard method delivers over screening on the raw estimates Yi directly. Therefore, if one

finds using the standard empirical Bayes method a worthwhile methodological investment,

then the additional gain of using close is likewise meaningful. Second, for 6 out of 15

measures of mobility, close even improves over the standard method by a larger amount

than the value of data—that is, the amount by which the standard method improves over

selecting Census tracts completely at random. These improvements are substantial, since

the value of data is likely economically significant if the mobility estimates are at all useful

for the policy problem.

2. Model and proposed method

We observe estimates Yi and their standard errors σi for parameters θi, over populations

i ∈ {1, . . . , n}. We maintain throughout that the estimates are conditionally Gaussian and

independent across i:

Yi | θi, σ2
i ∼ N (θi, σ

2
i ) i = 1, . . . , n. (2.1)

The Normality in (2.1) is motivated by the central limit theorem applied to the underlying

micro-data that generate the estimates Yi. That is, let ni denote the underlying sample size

in the micro-data which generate (Yi, σi). Standard large-sample approximation implies

Yi − θi
σi

d−→ N (0, 1) (2.2)

as ni →∞.5

We also assume that the population parameters (θi, σi) are sampled from some joint dis-

tribution. Throughout this paper, we condition on σ1:n = (σ1, . . . , σn) and treat them as

5Note that, under standard assumptions, the approximation (2.2) holds regardless of whether σi is an
estimated standard error or its unknown population counterpart. This is because the estimation error
in σi is typically of order 1/ni, which is smaller than that in Yi, which is of order 1/

√
ni.
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fixed. We assume that (θi, σi) are independently and identically drawn,6 but the conditional

distribution θi | σi may be different across σi:

θi | σi
i.n.i.d.∼ G(i). (2.3)

We use G(i) to denote the distribution of θi | σi. We use P0 to denote the distribution of

θ1:n | σ1:n, which is fully described by (G(1), . . . , G(n)). We refer to P0 as the oracle Bayes

prior.

These assumptions imply that the Bayes decision rule with respect to the oracle Bayes

prior P0 is optimal (Lehmann and Casella, 2006). Consider a loss function L(δ, θ1:n), which

evaluates an action δ at a vector of parameters θ1:n. For instance, in our empirical appli-

cation, the loss function may measure how well we estimate true mobility θ1:n or how well

we select high mobility Census tracts.7 At any realization of the data (Y1:n, σ1:n), the oracle

Bayes decision rule δ⋆ picks an action that minimizes the posterior expected loss:

δ⋆(Y1:n, σ1:n;P0) ∈ argmin
δ

EP0 [L(δ, θ1:n) | Y1:n, σ1:n]. (2.4)

Empirical Bayesians seek to approximate the oracle Bayes rule δ⋆ (Efron, 2014). With an

estimate P̂ for P0, it is natural to plug P̂ into (2.4):8

δEB(Y1:n, σ1:n; P̂ ) ∈ argmin
δ

EP̂ [L(δ, θ1:n) | Y1:n, σ1:n]. (2.5)

Popular empirical Bayes methods impose more structure than (2.3) in order to simplify

estimating P0.
9 The standard parametric empirical Bayes method additionally models G(i)

as identical across i and Gaussian: i.e., for all i, G(i)
i.i.d.∼ N (m0, s

2
0) (Morris, 1983). Following

the recipe (2.5), this approach estimates the prior parameters (m0, s
2
0). Henceforth, we shall

refer to this method as independent-gauss. On the other hand, state-of-the-art empirical

6Combined with the independence assumption of Yi across i, we assume that (θi, σi, Yi) are independently
drawn unconditionally. The independence assumption for the estimates Yi conditional on (θi, σi) holds when
the underlying micro-data for different estimates Yi are sampled independently. This assumption does not
precisely hold for the Opportunity Atlas, but the correlation between Yi and Yj , which arises from individuals
who move between tracts, is likely small. Papers imposing this assumption include Mogstad et al. (2020)
and Andrews et al. (2023). Moreover, we discuss an interpretation of the procedure when we erroneously
assume that Yi and/or θi are independent across i in Appendix A.6.
7We formalize the sense of optimality and formalize three decision problems in Section 2.3.
8To emphasize the distinction between the true expectation with respect to the data-generating process (2.3)

and a posterior mean taken with respect to some possibly estimated measure P̂ , we shall use E to refer to
the former and E to refer to the latter. Subscripts typically make the distinction clear as well. Specifically,

EP̂ [L(δ, θ1:n) | Y1:n, σ1:n] =

∫
L (δ(Y1:n, σ1:n), θ1:n)

∏n
i=1 φ

(
yi−θi
σi

)
P̂ (dθ1:n | σ1:n)∫ ∏n

i=1 φ
(

yi−θi
σi

)
P̂ (dθ1:n | σ1:n)

,

where φ(·) is the probability density function of a standard Gaussian.
9The literature on empirical Bayes methods is vast. For theoretical and applied results of particular interest
to economists, see the recent lecture by Gu and Walters (2022) and references therein. Efron (2019) and
accompanying discussions are excellent introductions to the statistics literature.
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Bayes methods (Jiang, 2020; Soloff et al., 2021; Jiang and Zhang, 2009; Koenker and Gu,

2019; Gilraine et al., 2020) assume that the marginal distributions are equal to some common,

unknown distribution G(0), not necessarily Gaussian: i.e., for all i, G(i)
i.i.d.∼ G(0). They

estimate G(0) with nonparametric maximum likelihood and form decision rules according

to (2.5). We refer to this method as independent-npmle. The “independent” here

emphasizes that these methods assume prior independence: θi y σi under the prior P0.

We relax prior independence by instead modeling θi | σi as a location-scale family,10

indexed by unknown hyperparameters (m0(·), s0(·), G0(·)): Specifically, we assume

P (θi ≤ t | σi) = G0

(
t−m0(σi)

s0(σi)

)
, (2.6)

where the distribution G0 is normalized to have zero mean and unit variance. Under (2.6),

different values of σ may translate, compress, or dilate the conditional distribution of θ | σ
via the location parameter m0(·) and the scale parameter s0(·), but the conditional distri-

butions can be normalized to take the same shape G0(·). Under this model, the oracle prior

distribution P0 is fully described by the hyperparameters (m0(·), s0(·), G0(·)). Our method,

close, proposes to estimate P0 with an estimate P̂ derived from estimated hyperparame-

ters (m̂(·), ŝ(·), Ĝn). close then produces empirical Bayes decision rules with respect to the

estimated prior P̂ , following the recipe (2.5).

Before specifying our procedure in detail in Section 2.2, we illustrate with an example

where prior independence fails and show what happens to empirical Bayes decision rules

that inappropriately impose prior independence.

2.1. Plausibility of prior independence. As a running example, let us define economic

mobility θi as the probability of family income ranking in the top 20 percentiles of the

national income distribution, for a Black individual growing up in tract i whose parents are

at the 25th national income percentile. Note that the standard error σi for an estimate of

θi is then related to the implicit sample size—the number of Black households at the 25th

income percentile in tract i.

Prior independence is readily rejected for this measure of economic mobility. Figure 1

plots Yi against log10(σi) and imposes a nonparametric regression estimate of the conditional

mean function m0(σi) ≡ E[θi | σi] = E[Yi | σi]. If θi were independent of σi, then the true

10We explore alternatives to the location-scale model in Appendix A.7. We find that no alternative provides
a free-lunch improvement over our assumptions.
More restrictive forms of this assumption also appear in the past and concurrent literature. For instance,

Kline et al. (2023) model the dependence as a pure scale model θ | σ ∼ s(σ) · τ for some τ | σ i.i.d.∼ G (with
additional parametric restrictions on s(·)) and George et al. (2017) impose the location scale model (2.6)
with G0 ∼ N (0, 1) (as well as additional parametric restrictions on s0(·),m0(·)).
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Notes. All tracts within the largest 20 Commuting Zones (CZs) are shown. Due to the
regression specification in Chetty et al. (2020), point estimates of θi ∈ [0, 1] do not always
lie within [0, 1]. The orange line plots nonparametric regression estimates of the conditional
mean E[Y | σ] = E[θ | σ] ≡ m0(σ), estimated via local linear regression with automatic
bandwidth selection implemented in Calonico et al. (2019). The orange shading shows a 95%
uniform confidence band, constructed by the max-t confidence set over 50 equally spaced
evaluation points. The confidence band excludes any constant function. See Appendix G for
details on estimating conditional moments of θi given σi. □

Figure 1. Scatter plot of Yi against log10(σi) in the Opportunity Atlas

conditional mean function m0(σi) should be constant. Figure 1 shows the contrary—tracts

with more imprecisely estimated Yi tend to have higher economic mobility.11

This correlation is in part through the following channel. Since θi is an average outcome

for children from poor Black families, tracts with more poor Black families tend to have more

precise estimates of θi.
12 However, these tracts also tend to have lower economic mobility θi

due to the pernicious effects of residential segregation.

What happens if we apply empirical Bayes methods that assume prior independence here?

Figure 2 overlays empirical Bayes posterior means on the Yi-against-log σi scatterplot. In the

top panel, independent-gauss shrinks estimates Yi towards a common estimated mean m̂0,

depicted as the black line. independent-gauss shrinks noisier estimates more aggressively.

11Moreover, log σi remains predictive of Yi even if we residualize Yi against a vector of tract-level covariates
(Figure B.9).
Prior independence is also readily rejected for the mobility measure used in Bergman et al. (2023), but its
violation is not as severe once adjusted for tract-level covariates (see Section 5 and Figure B.8).
12Since θi is also the mean of a binary outcome, the asymptotic variance of its estimators also depend on
mechanically on θi.
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Notes. The top panel shows posterior mean estimates with independent-gauss shrinkage.
The middle panel shows the same with independent-npmle shrinkage. The bottom panel
displays posterior mean estimates from our preferred procedure, close-npmle. In the top
panel, the estimates for m0, s

2
0 are weighted by the precision 1/σ2

i (as in Bergman et al.,
2023). Under θi y σi, this weighting scheme improves efficiency of the (m0, s0)-estimates by
underweighting noisier Yi. □

Figure 2. Posterior mean estimates under prior independence
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When σi and θi are positively correlated—as is the case here—estimated posterior means

under independent-gauss systematically undershoot θi for populations with imprecise

estimates. Similarly, the middle panel of Figure 2 shows that independent-npmle suffers

from the same undershooting, though less so. In contrast, the bottom panel of Figure 2

previews our preferred procedure, close-npmle, which shrinks towards the conditional

mean E[θi | σi], thus avoiding the undershooting.

This undershooting is particularly problematic if one would like to select high-mobility

Census tracts. These high-mobility tracts are exactly those with high imprecision σi, owing

to the positive correlation between θi and σi. By shrinking these tracts severely towards

the estimated common mean, empirical Bayes under prior independence makes suboptimal

selections that may even underperform screening directly based on Yi.
13

For a given empirical context, prior independence can always be checked empirically by

plotting à la Figure 1. Nevertheless, we discuss the general plausibility of prior independence

in the following remark.

Remark 1 (Plausibility of prior independence). To describe the general channels underlying

the potential failure of prior independence, let us write (2.2) in a different form

√
ni(Yi − θi)

d−→ N (0, σ2
0i) where σi ≈

σ0i√
ni
. (2.7)

Expression (2.7) decomposes the (estimated) standard error into the underlying sample size

ni in the micro-data and the asymptotic variance σ2
0i of the (properly scaled) estimator. Both

ni and σ0i may predict θi in a variety of empirical contexts.

Let us start with the implicit sample sizes ni. It is possible that ni is in part determined by

θi, which we loosely term selection. In value-added modeling, ni is the number of observations

associated with a provider. It is possible that ni selects on the latent quality θi of that

provider. For instance, Chandra et al. (2016) find “higher quality hospitals have higher

market shares and grow more over time.” If market share and hospital size relate to the

underlying sample size ni (e.g. number of patient observations) for estimating hospital value-

added, then this suggests non-independence between θi and σi (see George et al. (2017) for

some empirical evidence). As another example, in meta-analysis, suppose θi represents the

treatment effect of some intervention i. If researchers power studies based on informative

priors for θi, then we should observe that interventions with larger conjectured effect sizes

have smaller sample sizes ni.

Another channel driving the correlation between ni and θi can be loosely termed conges-

tion, where ni affects the latent feature θi. For our primary application, ni represents the

number of poor and minority households in a Census tract, and θi represents underlying eco-

nomic or social mobility. Places with more poor and minority households experience white

13This latter point is similarly made in Mehta (2019), though for different loss functions.
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flight and residential segregation (Cutler et al., 1999; Agan and Starr, 2020; Kain, 1968),

develop oppressive institutions (Derenoncourt, 2022; Alesina et al., 2001), and provide worse

public goods (Laliberté, 2021; Jackson and Mackevicius, 2021; Colmer et al., 2020). These

factors contribute to lower economic mobility θi. Appendix A.5 contains more examples

of violation of prior independence and outlines a model in which selection and congestion

effects drive correlation between ni and θi.

There are also channels for the asymptotic variance σ2
0i to correlate with θi. In the context

of intergenerational mobility, a parallel literature on the Great Gatsby curve (Durlauf et

al., 2022) seeks to explain a negative relationship between inequality—which contributes to

σ2
0i—and intergenerational mobility. For instance, Becker et al. (2018) posit that parental

investment and parental human capital are complements for forming the skills of a child. As

a result, parents with higher human capital—and more wealth—invest disproportionately

more in their children’s education than parents with lower human capital. This process then

produces both inequality and low economic mobility. In other words, places that are more

unequal (which may result in higher σ2
0i) have lower mobility θi. ■

2.2. Conditional location-scale relaxation of prior independence. Having argued

that (i) prior independence is theoretically suspect and empirically rejected and that (ii)

inappropriately imposing it can harm empirical Bayes decision rules, we propose the con-

ditional location-scale model (2.6) as a relaxation.14 Here, we state the location-scale as-

sumption (2.6) equivalently as the following representation with transformed parameters

τi =
θi−m0(σi)
s0(σi)

:

θi = m0(σi) + s0(σi)τi τi | σi
i.i.d.∼ G0 EG0 [τi] = 0 VarG0(τi) = 1. (2.8)

To estimate P0 under (2.8), it suffices to estimate the unknown hyperparameters (m0, s0, G0).

Expression (2.8) makes clear that, under the location-scale model, the transformed param-

eter τi ∼ G0 is independent from σi. Analogously, let Zi =
Yi−m0(σi)
s0(σi)

be the transformed

estimates and νi =
σi

s0(σi)
be their standard errors.

Crucially, (Zi, τi, νi) obey an analogue of the Gaussian location model (2.1) in which prior

independence holds:

Zi | νi, τi ∼ N (τi, ν
2
i ), independently across i and τi | σi

i.i.d.∼ G0.

Therefore, it is a natural to first transform (Yi, σi) into (Zi, νi) and then use empirical Bayes

methods that assume prior independence on these transformed quantities to estimate G0.

This strategy is still infeasible, since the transformation depends on unknown location and

scale parameters η0 ≡ (m0, s0). Fortunately, m0(·) and s0(·) are readily estimable from the

14In the presence of covariates Xi—which do not predict the noise in Yi, Yi y Xi | θi, σi—the assumption
(2.6) can be modified to accommodate additional covariates as well. We provide additional discussion of
covariates in Appendix A.6.2.
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data (Yi, σi), as they only require conditional expectations and variances of Y given σ:

m0(σ) = E[θ | σ] = E[Y | σ] and s20(σ) = Var(θ | σ) = E[(Y −m0(σ))
2 | σ]− σ2. (2.9)

Given estimates m̂ and ŝ of m0(·) and s0(·), we then form the estimated transformed data

Ẑi, ν̂i as

Ẑi =
Yi − m̂(σi)

ŝ(σi)
and ν̂i =

σi
ŝ(σi)

. (2.10)

We then apply empirical Bayes methods assuming prior independence on (Ẑi, ν̂i). This

leads to a family of empirical Bayes strategies that we refer to as conditional location-scale

empirical Bayes, or close:15

close–step 1 Nonparametrically estimate m0(σ), s
2
0(σ) according to (2.9).

close–step 2 With the estimates η̂ = (m̂, ŝ), transform the data according to

(2.10). Apply empirical Bayes methods with prior independence to estimate G0

with some Ĝn on the transformed data (Ẑi, ν̂i).

close–step 3 Having estimated (η̂, Ĝn), which implies an estimate P̂ of P0, we

then form empirical Bayes decision rules following (2.5).

This framework produces a family of empirical Bayes strategies, since close–step 2

can take different forms. To leverage theoretical and computational advances, we will focus

on—and recommend—using nonparametric maximum likelihood (npmle) to estimate G0.

That is, we maximize the log-likelihood of (an estimated version of) the transformed data

Zi, whose marginal distribution is the convolution G0 ⋆N (0, ν2i ):
16

Ĝn ∈ argmax
G∈P(R)

1

n

n∑
i=1

log

∫ ∞

−∞
φ

(
Ẑi − τ
ν̂i

)
1

ν̂i
G(dτ). (2.11)

When the estimated moments m̂, ŝ are constant functions of σ, close-npmle estimates

the same prior as independent-npmle. In the theoretical literature, under prior indepen-

dence, independent-npmle is state-of-the-art in terms of computational ease and regret

15We give a more detailed walkthrough of these steps in Section 4. We also detail a local linear regression

estimator in Appendix G for close–step 1 .
16We use (f ⋆g)(t) =

∫∞
−∞ f(x)g(t−x) dx to denote convolution and φ(t) = 1√

2π
e−t2/2 to denote the Gaussian

probability density function. The maximization is over the set of all probability measures on R, P(R).
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properties.17 Our subsequent results in Section 3 extend some of these favorable properties

to close-npmle under the conditional location-scale model.

A simple alternative, which we call close-gauss and think of as a “lite” version of

close-npmle, additionally models the shape G0 as standard Gaussian. We briefly discuss

its properties in the following remark.

Remark 2 (close-gauss). Under G0 ∼ N (0, 1), the oracle Bayes posterior means are

simply

θ∗i,N (0,1),η0
=

σ2
i

s20(σi) + σ2
i

m0(σi) +
s20(σi)

s20(σi) + σ2
i

Yi. (2.12)

Equation (2.12) is the analogue of posterior means estimated by independent-gauss,

where the unconditional meanm0 and variance s20 are replaced with their conditional counter-

parts (m0(·), s20(·)). As an empirical Bayes strategy, close-gauss then replaces the unknown

conditional moments with their estimated counterparts.18 Its properties depend on those of

the oracle (2.12) it mimics, which we turn to now.

Despite being rationalized under the assumption θi | σi ∼ N (m0(σi), s
2
0(σi)), (2.12) enjoys

strong robustness properties: It is optimal over a restricted class of decision rules and min-

imax over all decision rules—without imposing the location-scale assumption (2.6). First,

(2.12) is the optimal decision rule for estimating θi when we restrict to the class of decision

rules that are linear in Yi (Weinstein et al., 2018). Second, (2.12) is minimax in the sense that

it minimizes the worst-case mean squared error, where an adversary chooses G(1), . . . , G(n),

subjected to the constraint that G(i)’s first two moments are (m0(σi), s
2
0(σi)).

19

17The nonparametric maximum likelihood has a long history in econometrics and statistics (Kiefer and
Wolfowitz, 1956; Lindsay, 1995; Heckman and Singer, 1984). There is recent renewed interest. See, among
others, Koenker and Gu (2019); Koenker and Mizera (2014); Jiang and Zhang (2009); Jiang (2020); Soloff et
al. (2021); Saha and Guntuboyina (2020); Polyanskiy and Wu (2020); Shen and Wu (2022); Polyanskiy and
Wu (2021). Empirical Bayes methods via npmle have computational and theoretical advantages, though
much of the favorable theoretical results are proven in a homoskedastic setting. Its computational ease
(Koenker and Mizera, 2014; Koenker and Gu, 2017) and lack of tuning parameters are advocated in Koenker
and Gu (2019). Polyanskiy and Wu (2020) find that, with high probability, npmle recovers a distribution

Ĝn with only O(log n) support points despite searching over the set of all distributions; they refer to this
property as self-regularization. For regret control in the homoskedastic Gaussian model, Jiang and Zhang
(2009)’s result is the best known and matches a lower bound up to log factors (Polyanskiy and Wu, 2021).
18(2.12) is first proposed by Weinstein et al. (2018). Weinstein et al. (2018) propose estimating m0(·), s0(·)
in a particular manner to ensure the resulting empirical Bayes posterior means dominate the naive estimates
Yi uniformly over θ1:n, σ1:n, which are conditioned upon.
19Formally,

θ∗1:n,N (0,1),η0
∈ argmin

δ1:n

sup
G(1:n)

1

n

n∑
i=1

EG(i)

[
(δi(Y1:n, σ1:n)− θi)2

]
,

where the supremum is taken over G(i) having moments η0(σi). To wit, note that the Bayes risk of (2.12) is
the same regardless of choices of G(1), . . . , G(n) under the moment constraint, and it is equal to the optimal

Bayes risk when G(i) ∼ N (m0(σi), s
2
0(σi)). We therefore conclude that (2.12) is minimax by observing that

the minimax Bayes risk is at least the risk of (2.12).
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However, the Normality assumption does imply that (2.12), unlike close-npmle, fails to

approximate the optimal decision (2.4) when the location-scale assumption (2.6) holds but

θi | σi may not be Gaussian. Since we also show that close-npmle is worst-case robust—

though with higher worst-case risk than close-gauss, we recommend close-npmle over

close-gauss, unless the researcher is extremely concerned about the misspecification of the

location-scale model. ■

2.3. Decision problems. To prepare for our theoretical results in the next section, we close

this one by introducing decision theory notation and formalizing a few decision problems. Let

δ(Y1:n, σ1:n) be a decision rule mapping the data (Y1:n, σ1:n) to actions. Let L(δ, θ1:n) denote

a loss function mapping actions and parameters to a scalar. Let RF(δ, θ1:n) = E[L(δ, θ1:n) |
θ1:n, σ1:n] denote the frequentist risk associated with the loss function L, which integrates

over the randomness in Y1:n, keeping θ1:n, σ1:n fixed. Finally, let RB(δ;P0) = EP0 [RF(δ, θ1:n) |
σ1:n] be the Bayes risk of δ under P0, which additionally integrates over the conditional

distribution θ1:n | σ1:n.20

The oracle Bayes decision rule δ⋆ (2.4) is optimal in the sense that it minizes RB. A

natural metric of success for the empirical Bayesian (2.5) is thus the gap between the Bayes

risks of δEB and δ⋆. We refer to this quantity as Bayes regret :

BayesRegretn(δEB) = RB(δEB;P0)−RB(δ
⋆;P0) = E[L(δEB, θ1:n)− L(δ⋆, θ1:n) | σ1:n] (2.13)

where the right-hand side integrates over the randomness in θ1:n, Y1:n, and, by extension,

P̂ . If an empirical Bayes method achieves low Bayes regret, then it successfully imitates

the decisions of the oracle Bayesian, and its decisions are thus approximately optimal. Our

theoretical results focus on bounding Bayes regret for close.21

We introduce a few concrete decision problems by specifying the actions δ and loss func-

tions L and state the corresponding oracle Bayes and empirical Bayes decision rules.

Decision Problem 1 (Squared-error estimation of θ1:n). The canonical statistical problem

(Robbins, 1956) is estimating the parameters θ1:n under mean-squared error (MSE). That

is, the action δ = (δ1, . . . , δn) collects estimates δi for parameters θi, evaluated with MSE:

L(δ, θ1:n) =
1

n

n∑
i=1

(δi − θi)2.

20Since σ1:n is kept fixed throughout, we suppress their appearances in RB(·), RF(·).
21Bayes regret is likewise the focus of the literature in empirical Bayes that we build on (Jiang, 2020; Soloff
et al., 2021). On the other hand, other optimality criteria are also considered. For instance, Kwon (2021),
Xie et al. (2012), Abadie and Kasy (2019), and Jing et al. (2016) propose methods that use Stein’s Unbiased
Risk Estimate (SURE) to select hyperparameters for a class of shrinkage procedures. A common thread of
these approaches is that they seek optimality in terms of the frequentist risk RF—which is stronger than
controlling the Bayes risk RB—but limit attention to squared error and to a restricted class of methods.
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The oracle Bayes decision rule δ⋆ = (δ⋆1, . . . , δ
⋆
n) here is the posterior mean under P0, denoted

by θ∗i = θ∗i,P0
:

δ⋆i = θ∗i,P0
≡ EP0 [θi | Yi, σi]

with empirical Bayesian counterpart θ̂i,P̂ = EP̂ [θi | Yi, σi]. ■

Next, we describe two problems that are likely more relevant for policy-making, such

as replacing low value-added teachers and recommending high economic mobility tracts

(Gilraine et al., 2020; Bergman et al., 2023).22

Decision Problem 2 (utility maximization by selection). Suppose δ = (δ1, . . . , δn),

where δi ∈ {0, 1} is a selection decision for population i. For each population, selecting that

population has benefit θi and known cost ci. The decision maker wishes to maximize utility

(i.e., negative loss):

−L(δ, θ1:n) =
1

n

n∑
i=1

δi (θi − ci) .

The oracle Bayes rule selects all populations whose posterior mean benefit θ∗i,P0
exceeds the

selection cost ci:

δ⋆i = 1
(
θ∗i,P0

≥ ci
)
.

One natural empirical Bayes decision rule replaces θ∗i,P0
with θ∗

i,P̂
, following (2.5).

In a context where the parameters are conditional average treatment effects for a particular

covariate cell, θi = CATE(i) ≡ E[Y (1)− Y (0) | X = i], and δi are treatment decisions, this

problem is an instance of welfare maximization by treatment choice (Manski, 2004; Stoye,

2009; Kitagawa and Tetenov, 2018; Athey and Wager, 2021). In this setting, δi is a decision

to treat individuals with covariate values in the ith cell. The average benefit of treating these

individuals is their conditional average treatment effect θi, and the cost of treatment is ci.
23

■

Decision Problem 3 (top-m selection). Similar to utility maximization by selec-

tion, suppose δ consists of binary selection decisions, with the additional constraint that

exactly m populations are chosen:
∑

i δi = m. The decision maker’s utility is the average θi

of the selected set:

−L(δ, θ1:n) =
1

m

n∑
i=1

δiθi. (2.14)

22We analyze these problems from a decision-theoretic perspective, under the sampling assumption (2.3).
For a different and complementary perspective in terms of conditional-on-θ frequentist inference on ranks,
see Mogstad et al. (2020, 2023). For additional ranking-related decision problems, see Gu and Koenker
(2023).
23The literature on treatment choice uses a different notion of regret compared to this paper (based on RF

rather than RB).
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Oracle Bayes selects the populations corresponding to the m largest posterior means θ∗i,P0

(breaking ties arbitrarily):

δ⋆i = 1
(
θ∗i,P0

is among the top-m of θ∗1:n,P0

)
.

Again, the empirical Bayes recipe (2.5) suggests replacing P0 with the estimate P̂ .

The utility function (2.14) rationalizes the widespread practice of screening based on em-

pirical Bayes posterior means. For instance, this objective may be reasonable for rewarding

the top 5% of teachers or replacing the bottom 5%, according to value-added (Gilraine et

al., 2020; Chetty et al., 2014; Kane and Staiger, 2008; Hanushek, 2011). In Bergman et al.

(2023), where housing voucher holders are incentivized to move to Census tracts selected

according to economic mobility, (2.14) represents the expected economic mobility of a mover

if they move randomly to one of the selected tracts.24 ■

3. Regret results for close-npmle

We observe (Yi, σi)
n
i=1, where (θi, σi) satisfies the location-scale assumption (2.6) and

(Yi, θi, σi) obeys the Gaussian location model (2.1). Our recommended procedure, close-

npmle, transforms the data (Yi, σi) into (Ẑi, ν̂i), with estimated nuisance parameters η̂ =

(m̂, ŝ) for η0 = (m0, s0) in close–step 1 . It then estimates the unknown shape parameter

G0 via npmle (2.11) on (Ẑi, ν̂i)
n
i=1.

Our leading result shows that close-npmlemimics the oracle Bayesian as well as possible,

for the problem of estimation under squared error loss, in the sense that its Bayes regret

vanishes at the minimax optimal rate. Our second result connects squared error estimation

to Decision Problems 2 and 3, by showing that if an empirical Bayesian has low regret in

squared error loss, then they likewise have low regret for Decision Problems 2 and 3.

Since our main result assumes the location-scale model, one may be concerned about its

potential misspecification. The last result in this section, Theorem 4, bounds the worst-

case Bayes risk of an idealized version of close-npmle (i.e. with known η0 and fixed but

misspecified Ĝn) as a multiple of a notion of minimax risk, without assuming (2.6). Thus,

even under misspecification, close-npmle does not perform arbitrarily badly relative to the

minimax procedure.

The rest of this section states and discusses these results formally. Practitioners who are

less interested in the theoretical details are free to skip to Section 4, where we discuss a

number of practical considerations.

Remark 3 (Notation). In what follows, we use the symbol C to denote a generic positive and

finite constant which does not depend on n. We use the symbol Cx to denote a generic positive

24Our theoretical results in Section 3.2 can accommodate a slightly more general decision problem, which
allows for an expected mobility interpretation for movers who do not move uniformly randomly. See Re-
mark 5.
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and finite constant that depends only on x, some parameter(s) that describe the problem.

Occurrences of the same symbol C,Cx may not refer to the same constants. Similarly, for

An, Bn ≥ 0, generally functions of n, we use An ≲ Bn to mean that some universal C exists

such that An ≤ CBn for all n, and we use A ≲x B to mean that some universal Cx exists

such that An ≤ CxBn for all n. In logical statements, appearances of ≲ implicitly prepend

“there exists a universal constant” to the statement.25 Since all expectation or probability

statements are with respect to the conditional distribution P0 of θ1:n | σ1:n, going forward,

we treat σ1:n as fixed and simply write E[·],P(·) to denote the expectation and probability

over θ1:n | σ1:n ∼ P0. We omit the P0 subscript and the conditioning on σ1:n. ■

3.1. Regret rate in squared error. Since we consider close-npmle in mean-squared

error, we define

MSERegretn(G, η) ≡
1

n

n∑
i=1

(θ̂i,G,η − θi)2 −
1

n

n∑
i=1

(θ∗i − θi)
2

θ∗i ≡ θ∗i,P0
= EP0 [θi | Yi, σi] θ̂i,G,η ≡ EG,η[θi | Yi, σi] ≡

∫
θφ
(
Yi−θ
σi

)
1
σi
dG
(
θ−m(σi)
s(σi)

)
∫
φ
(
Yi−θ
σi

)
1
σi
dG
(
θ−m(σi)
s(σi)

)
as the excess loss of the empirical Bayes posterior means—obtained by prior G and nuisance

parameter estimate η for η0—relative to that of the oracle Bayes posterior means. The Bayes

regret for close-npmle in squared error is then the P0-expectation of MSERegretn:

BayesRegretn = E
[
MSERegretn(Ĝn, η̂)

]
= E

[
1

n

n∑
i=1

(θ∗i − θ̂i,Ĝn,η̂)
2

]
. (3.1)

Equation (3.1) additionally notes that expected MSERegretn is equal to the expected mean-

squared difference between the empirical Bayesian posterior means θ̂i,Ĝn,η̂ and the oracle

Bayes posterior means.

We assume that P0 ∈ P0 belongs to some restricted class. Informally speaking, our first

main result shows that for some constants C, β > 0 that depend solely on P0, the Bayes

regret in squared error decays at the same rate as the maximum estimation error for η0

squared:

BayesRegretn ≤ C(log n)β max

(
E∥η̂ − η0∥2∞,

1

n

)
,

where we define ∥η∥∞ = max (∥m∥∞, ∥s∥∞) for η = (m, s). This result continues a recent

statistics literature on empirical Bayes methods via npmle by characterizing the effect of

an estimated nuisance parameter η̂ in a first step.26

25For instance, statements like “under certain assumptions, P(An ≲ Bn) ≥ c0” should be read as “under
certain assumptions, there exists a constant C > 0 such that for all n, P(An ≤ CBn) ≥ c0.”
26Our theory hews closely to—and extends—the results in Jiang (2020) and Soloff et al. (2021), which
themselves are extensions of earlier results in the homoskedastic setting (Jiang and Zhang, 2009; Saha
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Moreover, we show that controlling the Bayes regret is no easier than estimating m in ∥·∥2,
which is a corresponding lower bound on regret. There exists c such that for any estimator

of θi, its worst-case regret is bounded below27

sup
P0∈P0

BayesRegretn ≥ c inf
m̂

sup
m0

E∥m̂−m0∥22.

Since the minimax estimation rates of ∥η̂ − η0∥∞ and of ∥η̂ − η0∥2 are the same up to loga-

rithmic factors, we conclude that our regret upper bound is rate-optimal up to logarithmic

factors. We now introduce the assumptions on P0 ∈ P0 needed for these results, state the

upper and lower bounds, and provide a technical discussion.

3.1.1. Assumptions for regret upper bound. We first assume that Ĝn is an approximate max-

imizer of the log-likelihood on the transformed data Ẑi and ν̂i satisfying some support re-

strictions. This is not a restrictive assumption, as the actual maximizers of the log-likelihood

function satisfy it.28

Assumption 1. Let ψi(Zi, η̂, G) ≡ log
(∫∞

−∞ φ
(
Ẑi−τ
ν̂i

)
G(dτ)

)
be the objective function in

(2.11), ignoring a constant factor 1/ν̂i. We assume that Ĝn satisfies

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn) ≥ sup
H∈P(R)

1

n

n∑
i=1

ψi(Zi, η̂, H)− κn (3.2)

for tolerance κn

κn =
2

n
log

(
n√
2πe

)
. (3.3)

Moreover, we require that Ĝn has support points within [mini Ẑi,maxi Ẑi]. To ensure that

κn is positive, we assume that n ≥ 7 = ⌈
√
2πe⌉.29

We now state further assumptions on the data-generating processes P0 beyond (2.6). First,

we assume that G0 is exponential-tailed with parameter α that controls the thickness of its

tails. We state the restriction in an equivalent form of simultaneous moment control.30

and Guntuboyina, 2020). These results, under either homoskedasticity or prior independence, show that
empirical Bayes derived from estimating the prior via npmle achieves fast regret rates. In particular, Soloff
et al. (2021) show that the regret rate is of the form C(log n)β 1

n under prior independence and assumptions
similar to ours.
27Our proof only exploits a lower bound for the performance of m̂; doing so is without loss if m0 and s0
belong to the same smoothness class.
28In particular, the support restriction for Ĝn in Assumption 1 is satisfied by all maximizers of the likelihood
function (see Corollary 3 in Soloff et al., 2021).
29The constants κn also feature in Jiang (2020) to ensure that the fitted likelihood is bounded away from
zero. The particular constants in κn are chosen to simplify expressions and are not material to the result.
30An equivalent statement to Assumption 2 is that there exists a1, a2 > 0 such that PG0(|τ | > t) ≤
a1 exp (−a2tα) for all t > 0. Note that when α = 2, G0 is subgaussian, and when α = 1, G0 is subex-
ponential (see the definitions in Vershynin, 2018), as commonly assumed in high-dimensional statistics.
Assumption 2 is slightly stronger than requiring that all moments exist for G0, and weaker than requiring
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Assumption 2. The distribution G0 is has zero mean, unit variance, and admits simulta-

neous moment control with parameter α ∈ (0, 2]: There exists a constant A0 > 0 such that

for all p > 0,

(Eτ∼G0 [|τ |p])
1/p ≤ A0p

1/α. (3.4)

Next, Assumption 3 imposes that members of P0 have various variance parameters uni-

formly bounded away from zero and infinity. This is a standard assumption in the literature,

maintained likewise by Jiang (2020) and Soloff et al. (2021).

Assumption 3. The variances (σ1:n, s0) admit lower and upper bounds:

σℓ < σi < σu and sℓ < s0(·) < su,

where 0 < σℓ, σu, s0ℓ, s0u < ∞. This implies that 0 < νℓ ≤ νi =
σi

s0(σi)
≤ νu < ∞ for some

νℓ, νu.

Lastly, we require that m0, s0 satisfies some smoothness restrictions. We also require that

m̂, ŝ satisfy some corresponding regularity conditions.

Assumption 4. Let Cp
A1
([σℓ, σu]) be the Hölder class of order p ≥ 1 with maximal Hölder

norm A1 > 0 supported on [σℓ, σu].
31 We assume that

(1) The true conditional moments are Hölder-smooth: m0, s0 ∈ Cp
A1
([σℓ, σu]).

Additionally, let β0 > 0 be a constant. Let V be a set of bounded functions supported

on [σℓ, σu] that (i) admits the uniform bound supf∈V∥f∥∞ ≤ CA1 and (ii) admits the metric

entropy bound

logN(ϵ,V , ∥·∥∞) ≤ CA1,p,σℓ,σu(1/ϵ)
1/p.

We assume that the estimators for m0 and s0, η̂ = (m̂, ŝ), satisfy the following assumptions.

(2) For any ϵ > 0, there exists a sufficiently large C = C(ϵ), independently of n, such

that for all n,

P
(
max (∥m̂−m0∥∞, ∥ŝ− s0∥∞) > C(ϵ)n− p

2p+1 (log n)β0
)
< ϵ.

G0 to have a moment-generating function. Similar tail assumptions feature in the theoretical literature on
empirical Bayes (Soloff et al., 2021; Jiang and Zhang, 2009; Jiang, 2020).
31We recall the definition of a Hölder class from van der Vaart and Wellner (1996), Section 2.7.1. We
specialize its definition to functions of one real variable. For an integer p, Hölder-p functions are (p − 1)-
times differentiable, with a Lipschitz continuous (p− 1)st derivative.

Definition 1. For some set X ⊂ R and constant A > 0, p > 0, let Cp
A(X ) be the set of continuous functions

f : X → R with ∥f∥(p) ≤ A. The norm ∥·∥(p) is defined as follows. Let p be the greatest integer strictly
smaller than p. Define

∥f∥(p) = max
k≤p

sup
x∈X

∣∣∣f (k)(x)∣∣∣+ sup
x,y∈X

∣∣∣f (p)(x)− f (p)(y)∣∣∣
|x− y|p−p .

We refer to Cp
A(X ) as a Hölder class of order p and ∥f∥(p) as the Hölder norm.
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(3) The nuisance estimators take values in V almost surely: P (m̂ ∈ V , ŝ ∈ V) = 1.

(4) The conditional variance estimator respects the conditional variance bounds in As-

sumption 3: P
(
s0ℓ
2
< ŝ < 2s0u

)
= 1.

Assumption 4 is a Hölder smoothness assumption on the nuisance parameters m0 and

s0, which is a standard regularity condition in nonparametric regression; our subsequent

minimax rate optimality statements are relative to this class. Moreover, it is also a high-level

assumption on the quality of the estimation procedure for (m̂, ŝ). Specifically, Assumption 4

expects that the nuisance parameter estimates m̂ and ŝ are rate-optimal up to logarithmic

factors (Stone, 1980). Assumption 4 also expects that the nuisance parameter estimates

belong to a class V with the same metric entropy behavior as the Hölder class Cp
A1
([σℓ, σu]).

32

Assumptions 2 to 4 specify a class of distributions P0 and nuisance estimators η̂ indexed

by a set of hyperparameters H = (σℓ, σu, sℓ, su, A0, A1, α, β0, p). Our subsequent theoretical

results are finite sample, with implicit constants dependent on these hyperparameters H.
To review, (σℓ, σu, sℓ, su) are bounds on the variances (σ2

i , s
2(σi)); (A0, α) control the tails

of G0; and (A1, p) control the smoothness of η0; and β0 is the power of the log factor in the

∥·∥∞ estimation rate for η0.

3.1.2. Regret results. Consider the following “good event,” indexed by C > 0,

An(C) ≡
{
∥η̂ − η0∥∞ ≤ Cn− p

2p+1 (log n)β0
}
. (3.5)

An(C) indicates that the nuisance parameter estimates satisfy some rate in ∥·∥∞. Our main

result derives a convergence rate for the expected MSE regret conditional on this good event

An(C).

Theorem 1. Assume Assumptions 1 to 4 hold. Then, for any δ ∈ (0, 1
2
), there exists

universal constants C1,H,δ > 0 and C0,H,δ > 0 such that (i) P(An(C1,H,δ)) ≥ 1 − δ and that

(ii) the expected regret conditional on An(C1,H,δ) is dominated by the rate function

E
[
MSERegretn(Ĝn, η̂) | An(C1,H,δ)

]
≤ C0,H,δn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 . (3.6)

If the event An(C) is sufficiently likely, we can control expected regret on the bad event

AC
n as well. In Appendix G, we verify that local linear regression satisfies a weakening of

these assumptions that are also sufficient for the conclusion of Corollary 1.

32Regarding Assumption 4(2), we note that kernel smoothing estimators attain the rates required for Hölder
smooth functions m0, s0 (see Tsybakov (2008) and Appendix G). Regarding Assumption 4(3), if the nuisance
parameters are p-Hölder smooth almost surely, we can simply take V = Cp

A′
1
([σℓ, σu]) for some potentially

different A′
1. This can be achieved in practice by, say, projecting estimated nuisance parameters η̃ to

CA1([σℓ, σu]) in ∥·∥∞. Finally, Assumption 4(4) also expects the nuisance parameter estimates to respect
the boundedness constraints for s0. This is mainly so that our results are easier to state; we discuss this
assumption in Remark C.1.
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Corollary 1. Assume the same setting as Theorem 1. Suppose, additionally, for all suffi-

ciently large C1,H > 0, P(An(C1,H)) ≥ 1− n−2. Then, there exists a constant C0,H > 0 such

that the expected regret is dominated by the rate function

BayesRegretn = E
[
MSERegretn(Ĝn, η̂)

]
≤ C0,Hn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 .

We can show a corresponding lower bound on the Bayes regret—i.e., a lower bound on the

worst-case Bayes regret when an adversary picks G0, η0—by showing that any good posterior

mean estimate θ̂i implies a good estimate m̂(σi) form0. Minimax lower bounds for estimation

of m0 then imply lower bounds for estimation of the oracle posterior means θ∗i .
33

Theorem 2. Fix a set of valid hyperparameters H = (σℓ, σu, sℓ, su, A0, A1, α, β0, p) for As-

sumptions 2 to 4. Let P(H, σ1:n) be the set of distributions P0 on support points σ1:n

which satisfy (2.6) and Assumptions 2 to 4 corresponding to H. For a given P0, let

θ∗i = EP0 [θi | Yi, σi] denote the oracle posterior means. Then there exists a constant cH > 0

such that the worst-case Bayes regret of any estimator exceeds cHn
− 2p

2p+1 :

inf
θ̂1:n

sup
σ1:n∈(σℓ,σu)
P0∈P(H,σ1:n)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2 − (θ∗i − θi)2
]
≥ cHn

− 2p
2p+1 ,

where the infimum is taken over all (possibly randomized) estimators of θ1:n.

As a result, the rate (3.6) is optimal up to logarithmic factors. The additional logarithmic

factors are partly the price of having to estimate G0 via npmle and partly deficiencies in

the proof of Theorem 1. In any case, this cost is not substantial.

The regret upper bounds Theorem 1 and Corollary 1 are finite-sample statements. As a

result, they hold uniformly over all distributions P0 delineated by the problem parameters

H. However, the usefulness of Theorem 1 and Corollary 1 still lies in the convergence rate,

as the constants implied by the proofs are not sharp.

These regret upper bounds readily extend to the case where covariates are present and

the location-scale assumption is with respect to the additional covariates Xi:

θi | σi, Xi ∼ G0

(
θi −m0(Xi, σi)

s0(Xi, σi)

)
,

under assumption on m0, s0, m̂, ŝ analogous to Assumption 4. Of course, the resulting con-

vergence rate would suffer from the curse of dimensionality, and the term n− 2p
2p+1 would be

replaced with n− 2p
2p+1+d , where d is the dimension of X.

Taken together, Corollary 1 and Theorem 2 are strong statistical optimality guarantees

for close-npmle in the canonical problem of estimation with squared error loss. That is,

33A similar argument is considered in Ignatiadis and Wager (2019) for a related but distinct setting. See,
also, Appendix A.6.2.
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the worst-case performance gap of close-npmle relative to the oracle contracts at the best

possible rate, meaning that close-npmle mimics the oracle as well as possible.

For interested readers, we provide an overview of the proof of our main result Theorem 1

in the following remark. A more detailed walkthrough is in Appendix C.3.

Remark 4 (Informal discussion of the proof for Theorem 1). Regret results assuming prior

independence are established by Soloff et al. (2021) and Jiang (2020), and we build on

these results for Theorem 1. Applied to (Zi, νi, τi), these results state that (i) approximate

maximizers G̃n of the (infeasible) log-likelihood Ψn(η0, G) ≡ 1
n

∑
i ψi(Zi, η0, G) are close to

G0 in terms of the average Hellinger distance of the induced densities of Zi

h
2
(fG̃n,·, fG0,·) ≡

1

n

n∑
i=1

h2
(
N (0, ν2i ) ⋆ G̃n,N (0, ν2i ) ⋆ G0

)
, h2(f, g) ≡ 1−

∫ ∞

−∞

√
f(x)g(x) dx

and (ii) if h
2
(fG̃n,·, fG0,·) is small, then posterior means for τi under G̃n are close to posterior

means under G0 in squared error.

Our results extend this argument by accommodating the fact that η0 is unknown and

must be estimated with η̂.34 To apply (ii) in the literature, we would like to show that (i’)

Ĝn—an approximate maximizer of the feasible log-likelihood Ψn(η̂, G) =
1
n

∑
i ψi(Zi, η̂, G)—

is close to G0 in terms of h
2
(·, ·). This is not a straightforward task and is the most intricate

part of our argument. To show (i’), we prove a lower bound for the likelihood Ψn(η0, Ĝn)

(Theorem D.1) and adapt the argument for (i) to accommodate our likelihood lower bound

(Theorem E.1).

To lower bound Ψn(η0, Ĝn), we relate the two likelihoods by linearization (formally, see

(D.4)):

Ψn(η̂, Ĝn)−Ψn(η0, Ĝn) ≈
1

n

n∑
i=1

∂ψi(Zi, η0, Ĝn)

∂η
(η̂(σi)− η0(σi))︸ ︷︷ ︸

≤∥η̂−η0∥∞

.

Since Ĝn approximately maximizes the feasible likelihood Ψn(η̂, ·), Ψn(η̂, Ĝn) is large by con-

struction. Thus, if we can show that the right-hand side is small, then the infeasible likelihood

Ψn(η0, Ĝn) would be close to Ψn(η̂, Ĝn) and hence would also be large. To obtain the rate

(3.6), it is important to show that the right-hand side vanishes strictly faster than ∥η̂−η0∥∞.

To do so, we additionally need to show that the derivatives 1
n

∑
i ∂ψi(Zi, η0, Ĝn)/∂η are small.

Without it, we would obtain a worse squared error regret rate of the form n− p
2p+1 (log n)β.

34We also translate the resulting regret guarantee on estimating τi to regret guarantees on estimating θi. In
doing so, we identify an apparent gap in the arguments of Jiang (2020) and Soloff et al. (2021). We show a
modified argument avoids the gap in our setting, which applies to the setting in Soloff et al. (2021) as well.
See Remark F.1 for details.
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In particular, we manage to relate the average derivative to the average Hellinger distance

(see Lemmas D.1 and D.2)∣∣∣∣∣ 1n
n∑
i=1

∂ψi(Zi, η0, Ĝn)

∂η
(η̂(σi)− η0(σi))

∣∣∣∣∣ ≲ (log n)γh(fĜn,·, fG0,·)∥η̂ − η0∥∞, for some γ > 0.

Loosely, this is because the population score in η is mean-zero, E[∂ψi(Z, η0, G0)/∂η] = 0.

Thus if Ĝn is close to G0, then the sample score evaluated at Ĝn should also be approximately

zero. This is a key step in Appendix D.

This bound for Ψn(η0, Ĝn) creates an additional complication when attempting to apply

the claim (i). The claim (i) upper bounds the Hellinger distance h(fG̃n,·, fG0,·) using a lower

bound for Ψn(η0, G̃n). However, now our lower bound for the likelihood Ψn(η0, Ĝn) itself

depends on h(fĜn,·, fG0,·), and so we cannot apply (i) directly. The proof for (i’) additionally

modifies the argument for (i) to accommodate our likelihood bound (Appendix E). ■

So far, our regret guarantees are only about estimation in squared error (Decision Prob-

lem 1). In the next subsection, we analyze regret for empirical Bayes decision rules targeted

to the ranking-related problems (Decision Problems 2 and 3), and relate their performances

to those for Decision Problem 1.

3.2. Other decision objectives and relation to squared-error loss. Notably, the oracle

Bayes decision rules δ⋆ in Decision Problems 2 and 3 depend solely on the vector of oracle

Bayes posterior means θ∗1:n.
35 Therefore, for these problems, the natural empirical Bayes

decision rules simply replace oracle Bayes posterior means (θ∗i ) with empirical Bayes ones (θ̂i)

in the oracle decision rules.36 For instance, if one is comfortable with the prior estimated by

close-npmle, then the corresponding decision rules for Decision Problems 2 and 3 threshold

based on estimated posterior means under close-npmle.

In these problems, BayesRegretn (2.13) is equal to the expected risk gap between using

the feasible decision rules δ̂ and the oracle decision rules δ⋆. To specialize, we let UMRegretn

35In principle, one could consider many other policy problems with a ranking flavor (Koenker and Gu, 2019;
Kline et al., 2023). Among these problems, utility maximization by selection and top-m selection
are special in that optimal decisions are simple functions of the posterior means. We caution that the worst-
case regret rate for ranking-type problems without this property can be unfavorable—as Gu and Koenker
(2023) put it, “inherently futile”—since their optimal decisions depend on functionals that are known to be
difficult to estimate (i.e., they have logarithmic minimax rates of estimation, Pensky, 2017; Dedecker and
Michel, 2013; Cai and Low, 2011), without stronger assumptions on the prior.
In general, the minimax squared error rate of estimating E[f(θ)] is logarithmic, unless f is an analytic
function, by an extension of the argument in Cai and Low (2011). Ranking-type problems often involve f of
the form f(θ) = 1(θ > c) or f(θ) = max(θ, c), which are not smooth. This observation suggests that these
ranking-type problems may also suffer from logarithmic regret rates—though, this observation alone does
not rigorously prove this, as difficulties in estimating Ef(θ) in squared error might not preclude a polynomial
regret rate for these ranking-type problems.
36Theorem 3 applies to any estimators of the oracle Bayes posterior means—not necessarily derived through
an empirical Bayes procedure—and does not impose the location-scale assumption. As a result, it may be
of independent interest.
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denote BayesRegretn for Decision Problem 2 and we let TopRegret(m)
n denote BayesRegretn

for Decision Problem 3. The following result relates UMRegretn and TopRegret(m)
n to

MSERegretn.

Theorem 3. Suppose (2.3) holds, but (2.6) may or may not hold. Let δ̂i be the plug-in

decisions with any vector of estimates θ̂i, not necessarily from close-npmle. We have the

following inequalities on the expected regret corresponding to the decision rules δ̂i:

(1) For utility maximization by selection,

E[UMRegretn] ≤

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (3.7)

(2) For top-m selection,

E[TopRegret(m)
n ] ≤ 2

√
n

m

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (3.8)

Theorem 3 shows that the two decision problems utility maximization by selection

and top-m selection are easier than estimating the oracle Bayesian posterior means. As

a result, our convergence rates from Theorem 1 and Corollary 1 also upper bound regret

rates for these two decision problems, rendering the regret rates more immediately useful for

policy problems. In particular, for m/n ≍ 1, both regret rates (3.7) and (3.8) are of the form

n−p/(2p+1)(log n)c = o(1) under Corollary 1. Thus, the performance of the empirical Bayes

decision rule approximates that of the oracle with at least the rate O(n−p/(2p+1)) up to log

factors.

Remark 5 (Mover interpretation of Theorem 3). Recall that we can think of top-m se-

lection as the decision problem in Bergman et al. (2023). The utility function represents

the expected mobility of a mover, assuming that the mover moves randomly into one of the

high mobility Census tracts. Our proof of Theorem 3 in Appendix A.2 allows for a slightly

more general decision problem. Suppose the decision now is to provide a full ranking of Cen-

sus tracts for potential movers and maximize the expected mobility for a mover. Suppose

that the probability that a mover moves to a tract depends decreasingly and solely on the

tract’s rank. To be more concrete, suppose the mover has probability π1 of moving to the

highest-ranked tract, π2 to the second-highest, and so forth. Then, with the same argument,

the corresponding regret is dominated by 2
√
n
∑n

i=1 π
2
i ·
(
E
[
1
n

∑n
i=1(θ̂i − θ∗i )2

])1/2
, which

generalizes (3.8). ■

Remark 6 (Tightness of Theorem 3). We suspect that the actual performance of close-

npmle for Decision Problems 2 and 3 may be better than predicted by Theorem 3. Take

the bound for UMRegretn, for instance. As would be clear from the proof, the bound (3.7)
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holds even when the ci’s are adversarially chosen37 such that the empirical Bayesian makes

every mistake: δ̂i ̸= δ⋆i for every i. However, for a fixed vector c, we expect that δ̂i ̸= δ⋆i only

for a vanishing fraction of populations, and thus the actual performance of δ̂i may be better

than the rate in Appendix A.2 implies.38

Though we conjecture that the rate in Theorem 3 does not match a lower bound, Theo-

rem 3 is competitive with recent results. top-m selection is recently studied by Coey and

Hung (2022), who show that under prior independence, if θ̂1:n are posterior means for some

estimate Ĝ of the prior G(0), then

E[TopRegret(m)
n ] = O

(
W 2

1 (G(0), Ĝ)
)

where W1(P,Q) is the Wasserstein-1 distance between P,Q. Theorem 3 attains a worse

rate in parametric settings, when the prior G(0) can be estimated at fast rates. However,

in nonparametric settings, G(0) is often only estimable at logarithmic rates (Dedecker and

Michel, 2013), and thus the rate in Theorem 3 is much more favorable in those settings. ■

3.3. Robustness to the location-scale assumption (2.6). We prove our regret upper

and lower bounds imposing the location-scale model (2.6). This is an optimistic assessment

of the performance of close-npmle. While (2.6) nests prior independence, it may still

be misspecified. We now consider the worst-case behavior of close-npmle without the

location-scale assumption. Since without the location-scale assumption, close-npmle can

no longer hope to emulate the oracle Bayes decisions, we focus on worst-case Bayes risk here,

instead of on regret.

We will do so by considering an idealized version of the procedure. So long as θi | σi has
two moments, η0(·) = (m0(·), s0(·)) are well-defined as conditional moments of θi | σi without
imposing the location-scale assumption. We will assume that m0, s0 are known. Without the

location-scale model, G0 is ill-defined, but we will assume that we obtain some pseudo-true

value G∗
0 that has zero mean and unit variance. This is a reasonable condition to impose,

37That said, if the ci’s are indeed adversarially chosen given knowledge of (Y1:n, σ1:n, P0), then Theorem 3

does match a corresponding lower bound, derived by choosing ci = (θ̂i + θ⋆i )/2.
38Upper and lower bounds are derived in related but distinct settings by Audibert and Tsybakov (2007);
Bonvini et al. (2023); Liang (2000); some upper bounds, under possibly stronger assumptions, appear better
than implied by Appendix A.2.
For utility maximization by selection, suppose we impose a margin condition of the form

For all i, P(|θ∗i − ci| ≤ t) ≲ tξ ξ ∈ (0,∞), t ∈ (0, c0]

where if θ∗i has (uniform-in-i) bounded density around ci, then ξ can be taken to be 1. Proposition 2 in
Bonvini et al. (2023) then yields the sharper result that

UMRegretn ≲ξ
1

n

n∑
i=1

E[(θ̂i − θi)2] ≤

(
E

[
1

n

n∑
i=1

(θ̂i − θi)2
]) 1

2+
1
2

ξ
2+ξ

.

Further applications of Audibert and Tsybakov (2007) and Bonvini et al. (2023) to the Gaussian sequence
setting remain open.
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since every conditional prior distribution τi | σi obeys this moment constraint.39 Thus, for

estimating τi =
θi−m0(σi)
s0(σi)

, whose true prior is τi | σi ∼ Gi, this idealized procedure uses some

misspecified prior G∗
0 ̸= Gi, which does have the correct first two moments.

Using results we develop in a related note (Chen, 2023), we show that this idealized

procedure has maximum risk within a constant factor of the minimax risk, uniformly over

η0. The minimax risk here is defined with respect to a game where the analyst knows m0, s0

and an adversary chooses the shape of the distribution τi | σi for every i.
Theorem 4. Under (2.3) but not (2.6), assume the conditional distribution θi | σi has mean

m0(σi) and variance s20(σi). Denote the set of distributions of θ1:n | σ1:n which obey these

restrictions as P(m0, s0). Let θ̂i,G∗
0,η0

denote the posterior mean estimates with some prior

P ∗ under the location-scale model P ∗ (θi ≤ t | σi) = G∗
0

(
t−m0(σi)
s0(σi)

)
, for some fixed G∗

0 with

zero mean and unit variance. Let ρ = maxi s
2
0(σi)/σ

2
i < ∞ be the maximal conditional

signal-to-noise ratio and assume that it is bounded. Then, for some Cρ < ∞ that solely

depends on ρ,

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i,G∗
0,η0
− θi)2

]
≤ Cρ · inf

θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
. (3.9)

where the infimum on the right-hand side is over all (possibly randomized) estimators of θi

given (Yi, σi)
n
i=1 and η0(·).

Theorem 4 shows that the worst-case behavior of an idealized version of close-npmle

must come within a factor of the minimax risk and hence is not arbitrarily unreasonable, even

under misspecification. We caution that (3.9) is a fairly weak guarantee, in that the decision

rule that simply outputs the prior conditional mean (δi = θ̂i,δ0,η0 = m0(σi)) also satisfies it.

Nevertheless, even so, (3.9) does not hold for the idealized version of independent-gauss,

plugging in known unconditional moments m0 = 1
n

∑n
i=1m0(σi) and s

2
0 = 1

n

∑n
i=1(m0(σi) −

m0)
2+ s20(σi).

40 To provide additional reassurance for close-npmle under misspecification,

Appendix A.7.3 discusses an interpretation of close-npmle under misspecification of (2.6),

and the validation procedure developed in Section 4.3 provides unbiased evaluation without

relying on the location-scale model.

4. Practical considerations

4.1. A detailed recipe. We now describe the implementation of close-npmle in more

detail, following our previous outline in close–step 1 to close–step 3 .

39We do not know if the maximizer G of the population analogue to (2.11) respects the moment constraints.
In any case, imposing these moment constraints computationally in npmle is feasible, as they are simply
linear constraints over the optimizing variables. Projecting the estimated Ĝn to these moment constraints
makes little difference in our empirical exercise (Appendix B.2).
40To wit, take s0(σi) ≈ 0. Then, the minimax risk as a function of (s0(·),m0(·)) is approximately zero, but
m0(·) can be chosen such that the risk of independent-gauss is bounded away from zero.
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The first step close–step 1 estimates the conditional moments η0 = (m0, s0) nonpara-

metrically. Since the two conditional moments can be written as conditional expectations

m0(σ) = E[θ | σ] = E[Y | σ]

s20(σ) = Var(θ | σ) = E[(Y −m0(σ))
2 | σ]− σ2, (4.1)

we can estimate them accordingly with off-the-shelf methods (e.g., local polynomial kernel

smoothing methods implemented by Calonico et al., 2019). Specifically, estimating m0 with

m̂ is directly a nonparametric regression of Yi on σi.
41 Estimating s20(·) can be operationalized

by first nonparametrically regressing (Yi−m̂(σi))
2 on σi, and then subtracting off σ2

i . This is

a plug-in estimator for s20, as it replaces quantities in (4.1) with their empirical counterparts.42

A wrinkle is that the plug-in estimate ŝ may be negative.43 Truncating ŝ at zero results in

observations whose estimated prior variances ŝ2(σi) = 0. These observations also have im-

plied ν̂i =∞. For these observations, an empirical Bayesian taking ŝ2(σi) = 0 at face value

has degenerate priors at m̂(σi). Since observations with νi = ∞ do not contribute to the

likelihood objective for npmle, excluding them from the npmle computation does not alter

the estimated Ĝn. Thus, we can continue to use (m̂, ŝ2, Ĝn) as the estimated posterior—an

observation with ŝ2(σi) = 0 would have a point mass at m̂(σi) as its estimated posterior. In

our experience, this simple approach does not appear to affect performance. Nevertheless,

in Appendix G, we propose a heuristic but data-driven truncation rule, borrowing from a

statistics literature on estimating non-centrality parameters for non-central χ2 distributions

(Kubokawa et al., 1993). Appendix G also discusses tuning parameter selection for esti-

mating (m0, s0) and verifies that our local linear regression estimators satisfy the regularity

conditions in Section 3.

Next, in the second step close–step 2 , we form the transformed estimates Ẑi =
Yi−m̂(σi)
ŝ(σi)

and the transformed standard errors ν̂i = σi/ŝ(σi). We then estimate the npmle on the data

(Ẑi, ν̂i) by maximizing (2.11). In practice, the infinite-dimensional optimization problem

(2.11) is approximated with a finite-dimensional one by discretizing distributions on a grid.

To be precise, let mini Ẑi = τ(1) ≤ · · · ≤ τ(J) = maxi Ẑi be a pre-specified grid of points, not

41We take log(σi) in our empirical implementation since the distribution of σi tends to be right-skewed, and
thus we suspect regressing on log(σi) has a better fit.
42Since (4.1) can be written in different forms, there are other reasonable plug-in estimators for s0. We
investigate one such alternative estimator in Appendix B.2 and find very similar performance in our empirical
exercise.
43The negative estimated variance phenomenon similarly may occur with estimating the prior variance with
independent-gauss and with conditional variance estimation in Armstrong et al. (2022). This is in part
caused by estimation noise in Var(Yi | σi). However, there is some evidence that observations with large
estimated σi’s are underdispersed for the measures of economic mobility in the Opportunity Atlas (see
Appendix B.1.)
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necessarily equally spaced, and denote it by τ .44 The feasible version of (2.11) maximizes the

concave program π⋆ ≡ maxπ∈RJ≥0,π
′1=1

∑n
i=1 log

(∑J
j=1 πjφ

(
Ẑi−τ(j)
ν̂i

))
. The estimated npmle

Ĝn is a discrete distribution with support points τ(j) and corresponding masses π⋆j .

Finally, given the estimate Ĝn = (τ , π⋆), we can compute empirical Bayes decision rules

and implement close–step 3 by minimizing posterior expected loss. Since Ĝn is a discrete

distribution, the posterior for τi is given by the probability mass function

PĜn(τi = τ(j) | Ẑi = z, ν̂i = ν) ∝ π⋆j exp

(
− 1

2ν2
(z − τ(j))2

)
,

normalized so that the probabilities sum to 1. This probability mass function can be plugged

into (2.5) to compute the empirical Bayes decision rule for any loss function L.45

4.2. When does relaxing prior independence matter? When prior independence holds,

close-npmle is the same as independent-npmle, up to the estimation of the constant

conditional moments (m0(·), s0(·)). Since close-npmle has to estimate the conditional mo-

ments, we expect it to underperform independent-npmle, though not by much in large

samples.

When prior independence does not hold, but when the conditional location-scale model

(2.6) approximately holds, we expect close to outperform methods that assume prior in-

dependence. Qualitatively speaking, we expect the improvement of close-methods to be

large when the conditional expectation accounts for large portions of the unconditional signal

variance Var(θi). Since we can decompose Var(θi) = E[s20(σi)] + Var(m0(σi)), we expect the

improvement of close-methods to be large when the variance of the conditional expectation

Var(m0(σi)) is large compared to E[s20(σi)]. Intuitively, this is the case when σi is highly

predictive of θi. Whether this is the case can be easily checked by plotting Yi against σi, as

in Figure 1, and inspecting the estimated conditional moments.

Finally, when the conditional distributions θi | σi are non-Gaussian, and in particular when

they are discrete, skewed, or thick-tailed, we expect close-npmle to additionally outperform

independent-gauss due to not assuming Normality of θi. When the conditional priors are

Gaussian, estimating it via the npmle pays a modest statistical price. Admittedly, it is

often difficult to diagnose whether the underlying conditional distributions θi | σi have these
44Since the gridding is a computational approximation to the infinite dimensional optimization problem,
the sole downside of a finer grid is computational burden (cf. bias-variance tradeoffs in typical tuning
parameter selection problems). Ideally, adjacent grid points should have a sufficiently small and economically
insignificant gap between them. Since the true prior G0 for τi have zero mean and unit variance, we find that
a fine grid within [−6, 6] (e.g., 400 equally spaced grid points), with a coarse grid on [mini Ẑi,maxi Ẑi]\[−6, 6]
(e.g., 100 equally spaced grid points), performs well. Also see recommendations in Koenker and Gu (2017)
and Koenker and Mizera (2014).
45In the leading use-case, the posterior means for θi are simply m̂(σi) + ŝ(σi)EĜn,ν̂i

[τi | Ẑi, ν̂i]. In practice,

REBayes::GLmix (Koenker and Gu, 2017) in R implements estimation of the npmle and computation of the

posterior means EĜn,ν̂i
[τi | Ẑi, ν̂i].
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properties, since we only observe (Yi, σi). Likewise, so far the discussion in this subsection

is heuristic. To be more certain of the extent of improvement of close-npmle over other

methods, it is helpful to have out-of-sample validation. The next subsection proposes a

minor extension of Oliveira et al. (2021), which allows for an unbiased estimate of loss and

serves as a validation procedure.

4.3. A formal validation procedure via coupled bootstrap. Consider (Yi, σi) where

Yi | σi, θi ∼ N (θi, σ
2
i ). For some ω > 0 and an independent Gaussian noise Wi ∼ N (0, 1),

consider adding to Yi and subtracting from Yi some scaled version of Wi:

Y
(1)
i = Yi +

√
ωσiWi Y

(2)
i = Yi −

1√
ω
σiWi.

Oliveira et al. (2021) call (Y
(1)
i , Y

(2)
i ) the coupled bootstrap draws. Observe that the two

draws are conditionally independent:[
Y

(1)
i

Y
(2)
i

]
| θi, σ2

i ∼ N

([
θi

θi

]
,

[
(1 + ω)σ2

i 0

0 (1 + ω−1)σ2
i

])
. (4.2)

The conditional independence allows us to use Y
(2)
i as an out-of-sample validation for decision

rules computed based on Y
(1)
i . We denote their variances by σ2

i,(1) and σ
2
i,(2).

It is helpful to think of Y
(1)
i as training data and Y

(2)
i as testing data. In fact, the coupled

bootstrap precisely emulates sample-splitting on the micro-data. To see that, suppose Yi =
1
ni

∑n
j=1 Yij is a sample mean of i.i.d. micro-data {Yij : j = 1, . . . , ni}. Suppose we split

the micro-data {Yij : j = 1, . . . , ni} into a training set and a testing set, with proportions
1

ω+1
and ω

ω+1
, respectively. Let Y

(1)
i and Y

(2)
i be the training and testing set sample means,

respectively. Then the central limit theorem implies that, approximately,

Y
(1)
i | θi, σ2

i ∼ N
(
θi, (1 + ω)σ2

i

)
Y

(2)
i | θi, σ2

i ∼ N
(
θi, (1 + ω−1)σ2

i

)
(4.3)

independently. Note that the two representations (4.2) and (4.3) are equivalent, and hence

coupled bootstrap emulates sample-splitting. For instance, coupled bootstrap with a value

of ω = 1/9 is statistically equivalent to splitting the micro-data with a 90-10 train-test split.

Just as we can perform out-of-sample validation with sample-splitting on the micro-data,

we can also do so with the coupled bootstrap emulation of sample-splitting. The following

proposition formalizes this and states unbiased estimators for the loss of these decision rules,

as well as their accompanying standard errors.46

46Oliveira et al. (2021) state the unbiased estimation result for the mean-squared error estimation problem.
They develop the result further by connecting the coupled bootstrap estimator to Stein’s unbiased risk
estimate. Our analogous calculation for other loss functions and for the standard errors is a minor extension
of their results. Proposition 1 can also be easily generalized to other loss functions that admit unbiased
estimators (Effectively, the loss is a function of a Gaussian location θi. For unbiased estimation of functions
of Gaussian parameters, see Table A1 in Voinov and Nikulin, 2012).
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Table 1. Unbiased estimators for loss of decision rules and associated condi-
tional variance expressions (Proposition 1)

Problem Unbiased estimator of loss, T
(
Y

(2)
1:n , δ

)
Var

(
T
(
Y

(2)
1:n , δ

)
| F
)

Decision Problem 1 1
n

∑n
i=1

(
Y

(2)
i − δi(Y (1)

1:n )
)2
− σ2

i,(2)
1
n2

∑n
i=1 Var

(
(Y

(2)
i − δi(Y (1)

1:n ))
2 | F

)
Decision Problem 2 − 1

n

∑n
i=1 δi(Y

(1)
1:n )(Y

(2)
i − ci) 1

n2

∑n
i=1 δi(Y

(1)
1:n )σ

2
i,(2)

Decision Problem 3 − 1
m

∑n
i=1 δi(Y

(1)
1:n )Y

(2)
i

1
m2

∑n
i=1 δi(Y

(1)
1:n )σ

2
i,(2)

Proposition 1. Suppose (Yi, σi) obey the Gaussian heteroskedastic location model, as-

sumed to be independent across i (2.3). Fix some ω > 0 and let Y
(1)
1:n , Y

(2)
1:n be the coupled

bootstrap draws. For some decision problem, let δ(Y
(1)
1:n ) be some decision rule using only

data
(
Y

(1)
i , σ2

i,(1)

)n
i=1

. Let F =
(
θ1:n, Y

(1)
1:n , σ1:n,(1), σ1:n,(2)

)
, for Decision Problems 1 to 3, the

estimators T (Y
(2)
1:n , δ) displayed in Table 1 are unbiased for the corresponding loss:

E
[
T (Y

(2)
1:n , δ(Y

(1)
1:n )) | F

]
= L

(
δ(Y

(1)
1:n ), θ1:n

)
.

Moreover, their conditional variances are equal to those expressions displayed in the third

column of Table 1.

Proposition 1 allows for an out-of-sample evaluation of decision rules, as well as uncertainty

quantification around the estimate of loss, solely imposing the heteroskedastic Gaussian

model. This is a useful property in practice for comparing different empirical Bayes methods.

The alternative is to take some estimated prior—say the one learned by close-npmle—as

the true prior, and evaluate performance of competing methods. Doing so likely tips the

scale in favor of a particular method, and we advocate for the coupled bootstrap instead.

5. Empirical illustration

How does close-npmle perform in the field? We now consider two empirical exercises

related to the Opportunity Atlas (Chetty et al., 2020) and Creating Moves to Opportunity

(Bergman et al., 2023). We first summarize these papers.

5.1. The Opportunity Atlas and Creating Moves to Opportunity. Chetty et al.

(2020) and Bergman et al. (2023) are motivated by a growing literature in neighborhood

effects on upward mobility. There is a large body of quasiexperimental evidence that the

neighborhood a child grows up in has substantial causal effects on upward mobility (Chetty

and Hendren, 2018; Chetty et al., 2016; Laliberté, 2021; Chyn and Katz, 2021). Consequently,

social programs that encourage low-income families to move to better neighborhoods can

potentially benefit upward mobility.

Such programs hinge on two economic questions and one econometric question. First, how

do we measure neighborhood mobility? Second, are low-income families currently living in
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low-opportunity neighborhoods because they prefer some unobserved quality of these neigh-

borhoods, or is it due to certain economic and informational barriers? Third, econometrically,

given noisy measures of mobility, how do we identify high-mobility neighborhoods?

Motivated by the first question, Chetty et al. (2020) provide Census tract-level estimates

of poor children’s outcomes in adulthood and argue that these observational measures of

mobility predict neighborhoods’ causal effects. Motivated by the second question, Bergman

et al. (2023) show that financial assistance and informational support do induce low-income

families to move to neighborhoods that researchers recommend, indicating that these families

indeed face barriers to moving to opportunity. The third question is naturally answered by

empirical Bayes methods.

Specifically, using longitudinal Census micro-data, Chetty et al. (2020) estimate tract-

level children’s outcomes in adulthood and publish the estimates in a collection of datasets

called the Opportunity Atlas. Each dataset contains estimates and standard errors for some

particular definition of the economic parameter of interest, at the Census tract i level. Taking

these estimates from the Opportunity Atlas, Bergman et al. (2023) conducted a program in

Seattle called Creating Moves to Opportunity. They provided assistance to treated low-

income individuals47 to move to “Opportunity Areas”—Census tracts with empirical Bayes

posterior means in the top third.48 We view Bergman et al.’s (2023) objectives as top-m

selection (Decision Problem 3), for m equal to one third of the number of tracts in King

County, Washington (Seattle).

The Opportunity Atlas also includes tract-level covariates, a complication that we have

so far abstracted away from. In the ensuing empirical exercises—as well as in Bergman

et al. (2023)—the estimates and parameters are residualized against the covariates as a

preprocessing step. We now let Ỹi denote the raw Opportunity Atlas estimates for a pre-

residualized parameter ϑi and let (Yi, θi) be their residualized counterparts against a vector

of tract-level covariates Xi, with regression coefficient β.49 We can apply the empirical

Bayes procedures in this paper to (Yi, σ
2
i ) and obtain an estimated posterior for θi. This

estimated posterior for the residualized parameter θi then implies an estimated posterior for

47They are families with a child below age 15 who are issued Section 8 vouchers between April 2018 and
April 2019, with median household income of $19,000. About half of the sampled households are Black and
about a quarter are white (Table 1, Bergman et al., 2023).
48There are also adjustments to make the selected tracts geographically contiguous. See Bergman et al.
(2023) for details.
49Precisely speaking, let Xi be a vector of tract-level covariates. Let Ỹi be the raw Opportunity Atlas
estimates of a parameter ϑi, with accompanying standard errors σi. Let β be some vector of coefficients,
typically estimated by weighted least-squares of Yi on Xi. Let Yi = Ỹi − X ′

iβ and θi = ϑi − X ′
iβ be

the residuals. We assume that the tract-level covariates do not predict the estimation noise in Ỹi: i.e.,
Xi y Ỹi | θi, σ2

i . Since β is precisely estimated, we ignore its estimation noise. Then, the residualized objects
(Yi, θi) obey the Gaussian location model Yi | θi, σi ∼ N (θi, σ

2
i ). See additional discussion on covariates in

Appendix A.6.2. Figure B.6 contains empirical results without residualizing against covariates.
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the original parameter ϑi = θi+X
′
iβ, by adding back the fitted values X ′

iβ (Fay and Herriot,

1979). When there are no covariates, ϑi = θi and Yi = Ỹi.

We consider several measures of economic mobility ϑi. For our purposes, these definitions

of ϑi take the following form: ϑi is the population mean of some outcome for individuals

of some demographic subgroup growing up in tract i, whose parents are at the 25th income

percentile. We will consider three types of outcomes:

(1) Percentile rank of adult income

(2) An indicator for whether the individual has incomes in the top 20 percentiles

(3) An indicator for whether the individual is incarcerated

for the following demographic subgroups:50 (1) all individuals (pooled), (2) white individ-

uals, (3) white men, (4) Black individuals, and (5) Black men. As shorthands, we refer to

the three types of outcomes as mean rank, top-20 probability, and incarceration,

respectively. The outcome we use in Section 2 corresponds to top-20 probability for

Black individuals, while Bergman et al. (2023) consider mean rank pooled.51

The remainder of this section compares several empirical Bayes approaches on two exer-

cises. The first exercise is a calibrated simulation. In the simulation, we compare MSE per-

formance of various methods to the that of the oracle posterior. We find that close-npmle

has near-oracle performance in terms of MSE, and substantially outperforms independent-

gauss. The second exercise is an empirical application to a scale-up of the exercise in

Bergman et al. (2023). It uses the coupled bootstrap to evaluate whether close-npmle

selects more economically mobile tracts than independent-gauss. We find that it does,

and the magnitude of improvement is substantial compared to two benchmarks, which we

refer to as the value of basic empirical Bayes methods and the value of data.

5.2. Calibrated simulation. Our first empirical exercise is a calibrated simulation. To

devise a data-generating process that does not impose the location-scale assumption, we

partition σ into vingtiles, fit a location-scale model within each vingtile, and draw from

the estimated model (see Appendix B.3 for details). Since the location-scale model is only

imposed within each vingtile, this data-generating process does not impose (2.6) on the entire

dataset. Figure 3 shows an overlay of real and simulated data for one of the variables we

consider. Visually, at least, the simulated data resemble the real estimates.

50We focus on men as a subgroup since incarceration rates for women are extremely low.
51In each Opportunity Atlas dataset, the estimates Ỹi, σi are computed from the fitted value of a semipara-
metric regression procedure on the Census micro-data. The regression procedure implicitly pools observation
with similar parent income ranks and is not fully nonparametric. As a result of this extrapolation, the esti-
mates Yi need not respect support conditions for Bernoulli means. For instance, some estimates for top-20
probability and for incarceration are negative. Similarly, the standard errors for estimates for binarized
ϑi are typically not precisely of the form

√
ϑi(1− ϑi)/ni. We refer interested readers to Chetty et al. (2020)

for details of their regression specification.
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Figure 3. A draw of real vs. simulated data for estimates of top-20 prob-
ability for Black individuals

On the simulated data, we then put various empirical Bayes strategies to test. We consider

the feasible procedures naive, independent-gauss, independent-npmle, close-gauss,

and close-npmle, where naive sets θ̂i = Yi.
52 Because we have the ground truth data-

generating process, we additionally have two infeasible benchmarks:

• oracle: A Bayesian who has access to the distribution of (θi, σi) and uses the true

posterior means for θi.
53

• oracle-gauss: A Bayesian who knows (m0, s0) and uses (2.12).

For this exercise, we focus on estimating the parameters ϑi in MSE (Decision Problem 1).

Figure 4 plots the main results from this calibrated simulation. For each method and each

target variable, we display a relative measure of gain in terms of mean-squared error. For

each method, we calculate its squared error gain over naive, as a percentage of the squared

error gain of oracle over naive. If we think of the oracle–naive difference as the total

size of the “statistical pie,” then Figure 4 shows how much of this pie each method captures.

52We note that none of the feasible procedures (naive, independent-gauss, independent-npmle, close-

gauss, and close-npmle) have access to the true projection coefficient β of Ỹi onto Xi, which they must
estimate by residualizing against covariates on the data. Additionally, we weight the estimation of m0 and
s0 in independent-gauss by the precision 1/σ2

i , following Bergman et al. (2023).
53These posterior means are computed by approximating the true prior with the empirical distribution of a
large sample drawn from the true prior.
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Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Column median

-4 25 49 50 85 88 91 91 91

55 60 66 66 87 90 94 95 95

30 61 87 87 82 88 93 94 93

63 69 74 75 89 92 93 94 95

32 54 86 87 83 86 93 93 94

-160 9 67 67 57 81 91 93 93

31 51 65 65 75 80 94 97 95

-6 24 93 95 46 53 95 97 97

23 46 71 72 70 76 90 94 94

-8 21 94 96 37 45 95 97 97

-5 32 68 68 51 59 88 95 91

61 72 90 96 74 81 91 93 97

42 51 94 95 48 52 96 98 97

43 53 92 96 60 64 93 95 98

25 42 90 90 42 49 96 99 96

30 51 86 87 70 80 93 95 95

What % of Naive-to-Oracle MSE gain do we capture?

Notes. Each column is an empirical Bayes strategy that we consider, and each row is a
different definition of ϑi. The table shows relative performance, defined as the squared error
improvement over naive, normalized as a percentage of the improvement of oracle over
naive. That is, if we think of going to oracle from naive as the total extent of risk gains
via empirical Bayes methods, this relative performance denotes how much of those gains
each method captures. The last row shows the column median. Since we rely on Monte
Carlo approximations of oracle, the resulting Monte Carlo error causes close-npmle to
outperform oracle in the top right. Results are averaged over 1,000 Monte Carlo draws.
For absolute, un-normalized performance of independent-gauss, independent-npmle,
close-npmle, and oracle, see Figure B.10. □

Figure 4. Table of relative squared error Bayes risk for various empirical
Bayes approaches

A value of 70 in Figure 4, for instance, indicates that a particular method captures 70% of

the possible extent of risk gains for a particular parameter definition.

The first four columns show the relative mean-squared error performance without resid-

ualizing against covariates, applying empirical Bayes methods directly on (Ỹi, σi). We see

that methods which assume prior independence—independent-gauss and independent-

npmle—perform worse than methods based on close.54 Across the 15 variables, the median

54It may be surprising that independent-gauss can perform worse than naive on MSE, since Gaussian
empirical Bayes typically has a connection to the James–Stein estimator, which dominates the MLE. We
note that, as in Bergman et al. (2023), when we estimate the prior mean and prior variance, we weight the
data with precision weights proportional to 1/σ2

i . When the independence between θ and σ holds, these
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proportion of possible gains captured by independent-gauss is only 30%. This value is

51% for independent-npmle, and 87% for close-npmle. Individually for each variable,

among the first four columns, close-npmle uniformly dominates all three other methods.

This is because the standard error σi contains much of the predictive power of the covari-

ates, and using that information can be very helpful when the researcher does not have rich

covariate information.

The next five columns show performance when the methods do have access to covariate

information. Compared to their no-covariates counterparts, the methods that assume prior

independence do substantially better, since the covariates absorb some dependence between

ϑi and σi. For mean rank, after covariate residualization, there appears to be little de-

pendence between θi and σi. independent-npmle and close-npmle perform similarly,

capturing almost all of the available gains. Both methods slightly outperform the Gaussian

methods for mean rank.55

For the other two outcome variables, top-20 probability and incarceration, the

dependence between θi and σi is stronger, and close-based methods display substantial im-

provements over independent-gauss and independent-npmle. close-npmle achieves

near-oracle performance across the different definitions of θi (capturing a median of 95% of

the oracle-naive gap), and uniformly dominates all other feasible methods.

So far, we have tested the methods in a synthetic environment set up to imitate the real

data. Next, we turn to an empirical application that uses the coupled bootstrap (Section 4.3)

estimator of performance.

5.3. Validation exercise via coupled bootstrap. Our second empirical exercise uses the

coupled bootstrap described in Section 4.3 for the ranking policy problem in Bergman et al.

(2023). Throughout, we choose ω to emulate a 90-10 train-test split on the micro-data.

Bergman et al. (2023) use empirical Bayes methods to select the top third Census tracts

in Seattle, based on economic mobility—which we view as a top-m selection problem

(Decision Problem 3). Can close-npmle make better selections—can it select tracts with

higher ϑi on average? Specifically, we imagine scaling up Bergman et al. (2023)’s exercise and

perform independent-gauss and close-npmle for all Census tracts in the largest twenty

Commuting Zones. We then select the top third of tracts within each Commuting Zone,

according to empirical Bayesian posterior means for ϑi. Additionally, to faithfully mimic

precision weights typically improve efficiency. However, the weighting does break the connection between
Gaussian empirical Bayes and James–Stein, and the resulting posterior mean does not always dominate the
MLE (i.e., naive). To take an extreme example, if a particular observation has σi ≈ 0, then that observation
is highly influential for the prior mean estimate. If E[θi | σi] is very different for that observation than the
other observations, then the estimated prior mean is a bad target to shrink towards.
55Appendix B.4 contains an alternative data-generating process in which the true prior is Weibull, which has
thicker tails and higher skewness. Under such a scenario, npmle-based methods substantially outperform
methods assuming Gaussian priors.
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Bergman et al. (2023), here we perform all empirical Bayes procedures within Commuting

Zone. That is, for each of the twenty Commuting Zones that we consider, we execute all

empirical Bayes methods—including the residualization by covariates—with only Ỹi, σi of

tracts within the Commuting Zone.56

Figure 5(a) shows the estimated performance gap between a given empirical Bayes method

and naive as the x-position of the dots. The estimated performance of each method,57

defined as the average ϑi among those selected (2.14), is shown in the annotated figures. Ac-

cording to these estimates, close-npmle generally improves over independent-gauss.58

For themean rank variables, using close-npmle generates substantial gains for mobility

measures for Black individuals (0.8 percentile ranks for Black men and 0.5 percentile ranks

for Black individuals). To put these gains in dollar terms, the Housing Choice Voucher

holders in Bergman et al. (2023) have incomes around $19,000, and for these individuals, an

incremental percentile rank amounts to about $1,000. Thus, the estimated gain in terms of

mean income rank is roughly $500–800. For the other two outcomes, top-20 probability

and incarceration,59 the gains are even more sizable, especially for Black individuals.

These gains are as high as 2–3 percentage points on average in terms of these two variables.

Bergman et al. (2023) select tracts based on mean rank pooled. For this measure,

there is little additional gain from using close-npmle, at least when residualized against

sufficiently rich covariates. Nevertheless, since about half of the trial participants are Black

in Bergman et al.’s (2023) setting, one might consider providing more personalized recom-

mendations by targeting measures of economic mobility for finer demographic subgroups. If

we select tracts based on these demographic-specific measures of economic mobility, close-

npmle then provides economically significant improvements.60

We can think of the performance gap between independent-gauss and naive as the

value of basic empirical Bayes. If practitioners find using the standard empirical Bayes

method to be a worthwhile investment over screening on the raw estimates directly, perhaps

they reveal that the value of basic empirical Bayes is economically significant. Across the

56Appendix B.6 contains results where we perform empirical Bayes pooling over all Commuting Zones and
select the top third within each Communting Zone. We obtain very similar results. Appendix B.6 also
contains results without residualizing against covariates, and independent-gauss performs very poorly in
that setting. Appendix B.5 contains results on estimating ϑi in MSE (Decision Problem 1) in this context.
57By virtue of Proposition 1, these estimated performances are unbiased for the true (negative) Bayes risk.
Despite being averaged over 1,000 coupled bootstrap draws, these estimates are not free of sampling error,
since, for one, the stochastic components in Yi are not redrawn.
58For mean rank pooled, close-npmle is worse by 0.012 percentile ranks, and close-npmle is worse
by 0.058 percentile ranks for mean rank for white males. In either case, the estimated disimprovement is
small.
59For incarceration, we consider a policy objective of encouraging people to move out of high-incarceration
areas.
60Appendix B.7 shows that screening with mobility measures for Black individuals outperforms screening
mobility for Black individuals with the pooled estimate.
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(a) Estimated performance difference relative to naive

2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.6

38.738.2

49.649.6

35.534.7

18.618.5

23.523.2

10.17.1

22.521.5

9.36.0

4.44.0

3.42.4

7.95.8

6.04.0

15.412.1

CLOSE-NPMLE
Independent Gaussian
Naive (zero)

(b) Estimated performance difference relative to picking uniformly at random

0 1 2 3 4 5 6 7 8
Performance difference relative to picking uniformly at random (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.6

38.738.2

49.649.6

35.534.7

18.618.5

23.523.2

10.17.1

22.521.5

9.36.0

4.44.0

3.42.4

7.95.8

6.04.0

15.412.1

CLOSE-NPMLE
Independent Gaussian
Naive
[0,  SD( )]

Notes. These figures show the estimated performance of various decision rules over 1,000
draws of coupled bootstrap. Empirical Bayes methods, including residualization with re-
spect to the covariates, are applied within each Commuting Zone. Performance is measured
as the mean ϑi among selected Census tracts. All decision rules select the top third of Cen-
sus tracts within each Commuting Zone. Figure (a) plots the estimated performance gap
relative to naive, where we annotate with the estimated performance for close-npmle and
independent-gauss. Figure (b) plots the estimated performance gap relative to picking
uniformly at random; we continue to annotate with the estimated performance. The shaded
regions in Figure (b) have lengths equal to the unconditional standard deviation of the un-
derlying parameter ϑ. □

Figure 5. Performance of decision rules in top-m selection exercise

15 measures, the improvement of close-npmle over independent-gauss is on median

320% of the value of basic empirical Bayes, where the median is attained by mean rank for

Black individuals. Thus, the additional gain of close-npmle over independent-gauss

is substantial compared to the value of basic empirical Bayes. If the latter is economically

significant, then it is similarly worthwhile to use close-npmle instead.
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For 3 of the 15 measures, including our running example, independent-gauss in fact

underperforms naive, rendering the estimated value of basic empirical Bayes negative. As

a result, we consider a different normalization in Figure 5(b). Figure 5(b) plots the differ-

ence between a given method’s performance and the estimated mean ϑi for a given mea-

sure. Analogous to the value of basic empirical Bayes, we think of the difference between

independent-gauss’s performance and the estimated mean ϑi as the value of data, since

choosing the tracts randomly in the absence of data has expected performance equal to mean

ϑi. If the mobility estimates are at all useful for decision-making, the value of data must be

economically significant.

Across the 15 measures considered, the gain of close-npmle is on median 25% of the

value of data. For six of the 15 measures, the gain of close-npmle exceeds the value of

data. For mean rank for Black individuals, the incremental value of close-npmle over

independent-gauss is about 15% of the value of data, which is already sizable. These rel-

ative gains are more substantial for the binarized outcome variables top-20 probability

and incarceration. For our running example (top-20 probability for Black individu-

als), this incremental gain of close-npmle is 210% the value of data. That is, relative to

choosing randomly, close-npmle delivers gains 3.1 times that of independent-gauss.

6. Conclusion

This paper studies empirical Bayes methods in the heteroskedastic Gaussian location

model. We argue that prior independence—the assumption that the precision of estimates

does not predict the true parameter—is theoretically questionable and often empirically re-

jected. Empirical Bayes shrinkage methods that rely on prior independence can generate

worse posterior mean estimates, and screening decisions based on these estimates can suffer

as a result. They may even be worse than the selection decisions made with the unshrunk

estimates directly.

Instead of treating θi as independent from σi, we model its conditional distribution as

a location-scale family. This assumption leads naturally to a family of empirical Bayes

strategies that we call close. We prove that close-npmle attains minimax-optimal rates

in Bayes regret, extending previous theoretical results. That is, it approximates infeasible

oracle Bayes posterior means as competently as statistically possible. Our main theoretical

results are in terms of squared error, which we further connect to ranking-type decision

problems in Bergman et al. (2023). Additionally, we show that an idealized version of

close-npmle is robust, with finite worst-case Bayes risk. Lastly, we introduce a simple

validation procedure based on coupled bootstrap (Oliveira et al., 2021) and highlight its

utility for practitioners choosing among empirical Bayes shrinkage methods.
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Simulation and validation exercises demonstrate that close-npmle generates sizable

gains relative to the standard parametric empirical Bayes shrinkage method. Across cal-

ibrated simulations, close-npmle attains close-to-oracle mean-squared error performance.

In a hypothetical, scaled-up version of Bergman et al. (2023), across a wide range of economic

mobility measures, close-npmle consistently selects more mobile tracts than does the stan-

dard empirical Bayes method. The gains in the average economic mobility among selected

tracts, relative to the standard empirical Bayes procedure, are often comparable to—or even

multiples of—the value of basic empirical Bayes. These gains are even comparable to the

benefit of using standard empirical Bayes procedures over ignoring the data.

We close by highlighting some future directions. In Section 5, we use kernel smoothing

methods to estimate the unknown conditional moments η0 = (m0, s0). These methods

presume a given level of smoothness and do not adapt to the true smoothness of η0. We can

imagine replacing the conditional moment estimation with adaptive methods (e.g., van der

Vaart and van Zanten, 2009). With cross-fitting, the regret result should similarly adapt to

the ∥·∥∞ rate of the estimators. Additionally, for the purpose of frequentist inference, the

procedure of Armstrong et al. (2022) apply in our setting as well and provide confidence sets

for the vector of parameters θ1:n with average coverage guarantees. For frequentist inference

on the oracle posterior mean EP0 [θi | Yi, σi], we conjecture that a version of Ignatiadis and

Wager’s (2022) procedure—which so far only applies in the homoskedastic Gaussian case—is

valid under the location-scale model (2.6).
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Olea, José Luis Montiel, Brendan O’Flaherty, and Rajiv Sethi, “Empirical Bayes Counterfactuals in Poisson

Regression with an Application to Police Use of Deadly Force,” Available at SSRN 3857213, 2021. 2
Oliveira, Natalia L, Jing Lei, and Ryan J Tibshirani, “Unbiased risk estimation in the normal means problem

via coupled bootstrap techniques,” arXiv preprint arXiv:2111.09447, 2021. 4, 29, 38
Olley, G. Steven and Ariel Pakes, “The Dynamics of Productivity in the Telecommunications Equipment Indus-

try,” Econometrica, 1996, 64 (6), 1263–1297. 54
Pensky, Marianna, “Minimax theory of estimation of linear functionals of the deconvolution density with or without

sparsity,” 2017. 23
Polyanskiy, Yury and Yihong Wu, “Self-regularizing property of nonparametric maximum likelihood estimator

in mixture models,” arXiv preprint arXiv:2008.08244, 2020. 4, 13
and , “Sharp regret bounds for empirical Bayes and compound decision problems,” arXiv preprint

arXiv:2109.03943, 2021. 13
Rambachan, Ashesh, “Identifying prediction mistakes in observational data,” 2021. 2
Robbins, Herbert, “An empirical Bayes approach to statistics,” 1956. 14
Saha, Sujayam and Adityanand Guntuboyina, “On the nonparametric maximum likelihood estimator for

Gaussian location mixture densities with application to Gaussian denoising,” The Annals of Statistics, 2020, 48
(2), 738–762. 13, 17, 114

Sen, Bodhisattva, “A gentle introduction to empirical process theory and applications,” Lecture Notes, Columbia
University, 2018, 11, 28–29. 121, 128

Shen, Yandi and Yihong Wu, “Empirical Bayes estimation: When does g-modeling beat f -modeling in theory
(and in practice)?,” arXiv preprint arXiv:2211.12692, 2022. 13

Soloff, Jake A, Adityanand Guntuboyina, and Bodhisattva Sen, “Multivariate, heteroscedastic empirical
bayes via nonparametric maximum likelihood,” arXiv preprint arXiv:2109.03466, 2021. 4, 7, 13, 14, 17, 18, 19,
22, 75, 76, 112, 114

Stone, Charles J, “Optimal rates of convergence for nonparametric estimators,” The annals of Statistics, 1980,
pp. 1348–1360. 20

Stoye, Jörg, “Minimax regret treatment choice with finite samples,” Journal of Econometrics, 2009, 151 (1), 70–81.
15

Tsybakov, A.B., Introduction to Nonparametric Estimation Springer Series in Statistics, Springer New York, 2008.
20, 48, 120, 121, 123, 125

van der Vaart, Aad W and J Harry van Zanten, “Adaptive Bayesian estimation using a Gaussian random field
with inverse gamma bandwidth,” 2009. 39

van der Vaart, Aad W and Jon A Wellner, Weak convergence, Springer, 1996. 19, 73, 87, 126, 128
Vershynin, Roman, High-dimensional probability: An introduction with applications in data science, Vol. 47, Cam-

bridge university press, 2018. 18, 81, 86, 87, 91, 102
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Part 1. Proofs and discussions of results except the regret upper bound

Appendix A. Proofs and discussions of results except the regret upper bound

A.1. A simple regret rate lower bound: proof of Theorem 2. In this section, we prove

Theorem 2, restated below.

Theorem 2. Fix a set of valid hyperparameters H = (σℓ, σu, sℓ, su, A0, A1, α, β0, p) for Assump-

tions 2 to 4. Let P(H, σ1:n) be the set of distributions P0 on support points σ1:n which satisfy (2.6)

and Assumptions 2 to 4 corresponding to H. For a given P0, let θ
∗
i = EP0 [θi | Yi, σi] denote the

oracle posterior means. Then there exists a constant cH > 0 such that the worst-case Bayes regret

of any estimator exceeds cHn
− 2p

2p+1 :

inf
θ̂1:n

sup
σ1:n∈(σℓ,σu)
P0∈P(H,σ1:n)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2 − (θ∗i − θi)2
]
≥ cHn−

2p
2p+1 ,

where the infimum is taken over all (possibly randomized) estimators of θ1:n.

Proof. We consider a specific choice of G0, σ1:n, and s0. Namely, suppose G0 ∼ N (0, 1), σ1:n are

equally spaced in [σℓ, σu], and s0(σ) = (sℓ + su)/2 ≡ s0 is constant. Note that we can represent

Yi = θi + σℓWi︸ ︷︷ ︸
Vi

+(σ2i − σℓ)1/2Ui.

for independent Gaussians Wi, Ui ∼ N (0, 1). Suppose we are additionally given Vi, σℓ. The ex-

panded class of estimators θ̃1:n that may depend on Vi, σℓ is larger than the estimators θ̂1:n. More-

over, since ((Vi, σi)
n
i=1, σℓ) is sufficient for θ1:n, we may restrict attention to θ̃1:n that depend solely

on V1:n, σ1:n, σℓ.

Under our assumptions, the oracle posterior means θ∗i are equal to

θ∗i =
s20

s20 + σ2i
Yi +

σ2i
s20 + σ2i

m0(σi)

For a given vector of estimates θ̃1:n, we can form

m̂(σi) =
s20 + σ2i
σ2i

(
θ̃i −

s20
s20 + σ2i

Yi

)
Then

E

[
1

n

n∑
i=1

(θ̃i − θ∗i )2
]
= E

[
1

n

n∑
i=1

(
σ2i

s20 + σ2i

)2

(m̂(σi)−m0(σi))
2

]
≳ E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
.

We have just shown that

inf
θ̂1:n

sup
σ1:n,P0

E

[
1

n

n∑
i=1

(θ̂i − θi)2 − (θ∗i − θi)2
]
≳ inf

m̂
sup
m0

E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
where the supremum is over m0 satisfying Assumption 4, and the infimum is over all randomized

estimators of m0(σ1), . . . ,m0(σn) with data (Vi, σi). Note that the squared error loss on the right-

hand side takes expectation over the fixed design points σ1, . . . , σn.
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Lastly, we connect the squared loss on the design points to the L2 loss of estimating m0(·) with
homoskedastic data Vi ∼ N (m0(σi), σ

2
ℓ +s

2
0). Since we are simply confronted with a nonparametric

regression problem, note that we may translate and rescale so that the design points σ1:n are equally

spaced in [0, 1] and the variance of Vi is 1—potentially changing the constant A1 for the Hölder

smoothness condition. The remaining task is to connect the average ℓ2 loss on a set of equally

spaced grid points to the L2 loss over the interval.

Observe that for any m̂(σ1), . . . , m̂(σn), there is a function m̃ : [0, 1] → R such that its average

value on [1 + (i− 1)/n, 1 + i/n] is m̂(σi):

n

∫
[1+(i−1)/n,1+i/n]

m̃(σ) dσ = m̂(σi).

Now, note that∫ 1

0
(m̃(x)−m0(x))

2 dx =
n∑
i=1

∫
[(i−1)/n,i/n]

(m̃(x)−m0(x))
2 dx

≤ 2
n∑
i=1

∫
[(i−1)/n,i/n]

(m̃(x)−m0(σi))
2 + (m0(σi)−m0(x))

2 dx

(Triangle inequality)

≤ 2
n∑
i=1

[
1

n
(m̂i −m0(σi))

2 +
L2

n3

]

=
2

n

n∑
i=1

(m̂i −m0(σi))
2 +

2L2

n2
.

The third line follows by observing (i)
∫
I(m̃(x)−m0(σi))

2 dx =
(
n
∫
I m̃(x) dx−m0(σi)

)2 1
n and (ii)

m0(·) is Lipschitz for some constant L since p ≥ 1 in Assumption 4.

Therefore,

inf
m̂

sup
m0

E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
≥ 1

2
inf
m̃

sup
m0

{
E
[∫ 1

0
(m̃(x)−m0(x))

2 dx

]
− 2L2

n2

}
≳H n

− 2p
2p+1 ,

where the last inequality follows from the well-known result of L2 minimax regression rate for

Hölder classes. See, for instance, Corollary 2.3 in Tsybakov (2008). □

Remark A.1. For ease of interpretation, Theorem 2 is stated in the expected regret version,

which is slightly disconnected from the upper bound Theorem 1, which conditions on a high-

probability event. Observe that Theorem 1 immediately implies the in-probability upper bound on

MSERegretn:

MSERegretn(Ĝn, η̂) = OP

(
n
− 2p

2p+1 (log n)
2+α
α

+3+2β0
)
.

Using the in-probability version of the minimax lower bound for nonparametric regression in Theo-

rem 2 then implies an analogous lower bound (See, for instance, Theorems 2.4 and 2.5 in Tsybakov,

2008). ■

A.2. Relating other decision objects to squared-error loss.
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Theorem 3. Suppose (2.3) holds, but (2.6) may or may not hold. Let δ̂i be the plug-in deci-

sions with any vector of estimates θ̂i, not necessarily from close-npmle. We have the following

inequalities on the expected regret corresponding to the decision rules δ̂i:

(1) For utility maximization by selection,

E[UMRegretn] ≤

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (3.7)

(2) For top-m selection,

E[TopRegret(m)
n ] ≤ 2

√
n

m

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (3.8)

Proof. (1) We compute

UMRegretn =
1

n

n∑
i=1

1(θ∗i ≥ ci)(θi − ci)−
1

n

n∑
i=1

1(θ̂i ≥ ci)(θi − ci)

=
1

n

n∑
i=1

{
1(θ∗i ≥ ci)− 1(θ̂i ≥ ci)

}
(θi − ci)

By law of iterated expectations, since θ̂i, θ
∗
i are both measurable with respect to the data,61

E[UMRegretn] = E

[
1

n

n∑
i=1

{
1(θ∗i ≥ ci)− 1(θ̂i ≥ ci)

}
(θ∗i − ci)

]

Note that, for 1(θ∗i ≥ ci)−1(θ̂i ≥ ci) to be nonzero, ci is between θ̂i and θ∗i . Hence, |θ∗i−ci| ≤ |θ∗i−θi|
and thus

E[UMRegretn] ≤ E

[
1

n

n∑
i=1

|θ∗i − θi|

]
≤ E

[
1

n

n∑
i=1

(θ∗i − θi)2
]1/2

. (Jensen’s inequality)

(2) Let J ∗ collect the indices of the top-m entries of θ∗i and let Ĵ collect the indices of the top-m

entries of θ̂i. Then,

m

n
TopRegret(m)

n =
1

n

n∑
i=1

{
1(i ∈ J ∗)− 1(i ∈ Ĵ )

}
θi

and hence, by law of iterated expectations,

m

n
E[TopRegret(m)

n ] =
1

n

n∑
i=1

E
[{
1(i ∈ J ∗)− 1(i ∈ Ĵ )

}
θ∗i

]
.

61For a randomized decision rule θ̂i that is additionally measurable with respect to some U independent of
(θi, Yi, σi)

n
i=1, this step continues to hold since E[θi | U, Yi, σi] = θ∗i .
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Observe that this can be controlled by applying Proposition A.1, where wi = 0 for all i ≤ n −m
and wi = 1 for all i > n−m. In this case, ∥w∥ =

√
m. Hence,

m

n
E[TopRegret(m)

n ] ≤ 2

√
m

n
E

( 1

n

n∑
i=1

(θ̂i − θ∗i )2
)1/2

 ≤ 2

√
m

n

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

.

Divide through by m/n to obtain the result.

□

Proposition A.1. Suppose σ(·) is a permutation such that θ̂σ(n) ≥ · · · ≥ θ̂σ(1). Then

1

n

n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ
∗
σ(i) ≤

2∥w∥√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2,

where ∥w∥ =
√∑

iw
2
i .

Proof. We compute

1

n

n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ
∗
σ(i) ≤

∣∣∣∣∣ 1n
n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ̂σ(i)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

wi(θ̂σ(i) − θ∗σ(i))

∣∣∣∣∣
≤ ∥w∥2√

n
·

(
1

n

n∑
i=1

(θ∗(i) − θ̂σ(i))
2

)1/2

+
∥w∥2√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2

≤ 2
∥w∥2√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2.

The last step follows from the observation that

n∑
i=1

(θ∗(i) − θ̂σ(i))
2 ≤

n∑
i=1

(θ̂i − θ∗i )2.

The left-hand side is the sorted difference between θ∗i and θ̂i. This is smaller than the unsorted

difference by an application of the rearrangement inequality.62 □

A.3. Worst-case risk.

Theorem 4. Under (2.3) but not (2.6), assume the conditional distribution θi | σi has meanm0(σi)

and variance s20(σi). Denote the set of distributions of θ1:n | σ1:n which obey these restrictions as

P(m0, s0). Let θ̂i,G∗
0,η0

denote the posterior mean estimates with some prior P ∗ under the location-

scale model P ∗ (θi ≤ t | σi) = G∗
0

(
t−m0(σi)
s0(σi)

)
, for some fixed G∗

0 with zero mean and unit variance.

Let ρ = maxi s
2
0(σi)/σ

2
i < ∞ be the maximal conditional signal-to-noise ratio and assume that it

is bounded. Then, for some Cρ <∞ that solely depends on ρ,

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i,G∗
0,η0
− θi)2

]
≤ Cρ · inf

θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
. (3.9)

62That is, for all real numbers x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn,
∑

i xiyπ(i) ≤
∑

i xiyi for any permutation π(·).
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where the infimum on the right-hand side is over all (possibly randomized) estimators of θi given

(Yi, σi)
n
i=1 and η0(·).

Proof. Note that

θ̂i,G∗
0,η0

= s0(σi)τ̂i,G∗
0,η0

+m0(σi)

and

θi = s0(σi)τi +m0(σi).

Thus,

1

n

n∑
i=1

(θ̂i − θi)2 =
1

n

n∑
i=1

s20(σi)(τ̂i,G∗
0,η0
− τi)2.

Chen (2023) shows that

RB ≡ sup
{
Eτi∼G(i),Zi|τi∼N (τi,ν2i )

[(τ̂i,G∗
0,η0
− τi)2] : νi > 0, G(i), G

∗
0 has zero mean and unit variance

}
is finite. Taking the expected value with respect to P0 ∈ P(m0, s0) and apply the bound RB, we

have that

E

[
1

n

n∑
i=1

(θ̂i − θi)2
]
≤ RB

1

n

n∑
i=1

s20(σi).

Note that when P0 is such that θi | σi ∼ N (m0(σi), s
2
0(σi)), the risk of any procedure exceeds

the Bayes risk (achieved by (2.12)). Hence, the Bayes risk under this P0 lower bounds the minimax

risk
1

n

n∑
i=1

σ2i
σ2i + s20(σi)

s20(σi) ≤ inf
θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
.

Note that, for some cσℓ,su > 0,

1

n

n∑
i=1

σ2i
σ2i + s20(σi)

s20(σi) =
1

n

n∑
i=1

1

1 + s20(σi)/σ
2
i

s20(σi) ≥ cρ
1

n

n∑
i=1

s20(σi).

Hence

E

[
1

n

n∑
i=1

(θ̂i − θi)2
]
≤ RB

cρ

1

n

n∑
i=1

σ2i
σ2i + s20(σi)

s20(σi) ≤ Cρ inf
θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
.

□

A.4. Unbiased loss estimation.

Proposition 1. Suppose (Yi, σi) obey the Gaussian heteroskedastic location model, assumed to

be independent across i (2.3). Fix some ω > 0 and let Y
(1)
1:n , Y

(2)
1:n be the coupled bootstrap draws.

For some decision problem, let δ(Y
(1)
1:n ) be some decision rule using only data

(
Y

(1)
i , σ2i,(1)

)n
i=1

. Let

F =
(
θ1:n, Y

(1)
1:n , σ1:n,(1), σ1:n,(2)

)
, for Decision Problems 1 to 3, the estimators T (Y

(2)
1:n , δ) displayed

in Table 1 are unbiased for the corresponding loss:

E
[
T (Y

(2)
1:n , δ(Y

(1)
1:n )) | F

]
= L

(
δ(Y

(1)
1:n ), θ1:n

)
.

Moreover, their conditional variances are equal to those expressions displayed in the third column

of Table 1.
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Proof. These are straightforward calculations of the expectation. Since every expectation and

variance is conditional on θ1:n, Y
(1)
1:n , σ1:n,(1), σ1:n,(2), we write E[· | F ] and Var(· | F) without

ambiguity.

(1) (Decision Problem 1) The unbiased estimation follows directly from the calculation

E
[
(Y

(2)
i − δi(Y (1)

1:n ))
2 | F

]
= (θ

(2)
i − δi(Y

(1)
1:n ))

2 + σ2i,(2)

The conditional variance statement holds by definition.

(2) (Decision Problem 2) The unbiased estimation follows directly from the calculation

E
[
δi(Y

(1)
1:n )(Y

(2)
i − ci) | F

]
= δi(Y

(1)
1:n )(θi − ci).

The conditional variance statement follows from

Var
[
δi(Y

(1)
1:n )(Y

(2)
i − ci) | F

]
= δi(Y

(1)
1:n )σ

2
1:n,(2).

(3) (Decision Problem 3) The loss function for Decision Problem 3 is the same as that for

Decision Problem 2 with ci = 0. Since we condition on Y
(1)
1:n , the argument is thus analogous.

□

A.5. A discrete choice model. There are n options facing N consumers, where each consumer

chooses one option. Each option is characterized by idiosyncratic quality βj and inherent quality αj .

The latent quality of an option is θj = αj+ρ
Nj
E[N ] , where Nj ≤ N is the number of consumers using

option j, generated in equilibrium from a discrete choice model. The term ρNj reflects externalities

generated by the users of an option (congestion). We assume that αj , βj
i.i.d.∼ F where µ denotes

E[αj + βj ] and σ
2
α, σ

2
β, σαβ denotes the variances and covariance of α and β.

To connect this model to our setting, we can imagine that the data analyst has estimates Yj

for θj , whose standard errors are a function of Nj . The discrete choice model specifies how Nj

selects on the quality component αj , and ρ determines how θj is affected by Nj . We characterize

Cov(θj , Nj) as a function of the primitives ρ, µ, σα, σβ, σαβ.

Each individual i is endowed with a private type ϵi = (ϵi1, . . . , ϵiJ) of i.i.d Type-1 extreme

value random utilities. This prior for ϵi is common knowledge and well-specified. α1:n, β1:n, N are

common knowledge as well. Each individual i is an expected utility maximizer, where the utility

of item j is

Vj =

(
αj + βj + ρ

Nj,−i
N − 1

)
exp (ϵij)

where Nj,−i is the number of other individuals choosing item j. Since individuals other than i are

symmetric to i, the expected utility (conditional on what i observes) is63

EiVj = (αj + βj + ρπ−ij) exp (ϵij) ,

63Note that the externality that enters the utility is different from the externality in θ. This is for analytical
tractability purposes.
To prevent the utility component from becoming negative, we additionally assume that αj +βj > −ρ almost
surely, which imposes that ρ > −µ.
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where π−ij is i’s prior expectation of Nj,−i/(N − 1). A Bayes-Nash equilibrium is one in which

individual i chooses the option with the highest EiVj and his beliefs about other individuals, π−ij ,

are correct.

Since individuals are ex-ante symmetric, we assume that

π−ij = πj = P(EiVj ≥ EiVk ∀k).

In such a symmetric equilibrium, π solves the system of equations

αj + βj + ρπj(N − 1)∑
j αj + βj + ρπj(N − 1)

= πj =⇒ πj =
αj + βj∑
j αj + βj

.

Finally, we assume that the total number of consumers is ex ante random

N | (α1:n, β1:n) ∼ Pois

λ ·
 n∑
j=1

αj + βj

 .

Assume that the data-generating process draws α, β,N , and individuals play the Bayes–Nash equi-

librium under symmetric beliefs π. By the thinning property of Poisson processes, we have that

Lemma A.1. Nj | (α1:n, β1:n) ∼ Pois (λ(αj + βj)) independently across j.

Now, under this process, we can compute the covariance between the latent quality θj and the

sample size Nj in closed form:

Cov (θj , Nj) = Cov(αj , Nj)︸ ︷︷ ︸
selection

+
ρ

λnµ
Var(Nj)︸ ︷︷ ︸

congestion

= λ(σ2α + σαβ) +
ρ

λnµ

[
λµ+ λ2(σ2α + σ2β + 2σαβ)

]
This is positive—meaning that the latent quality is positively associated with precision—iff

ρ

λnµ
> −Cov(αj , Nj)

Var(Nj)
= −

σ2α + σαβ
µ+ λ(σ2α + σ2β + 2σαβ)

.

When the selection effect is positive (Cov(αj , Nj)), the above display requires the externality ρ

to not be too negative so as to dominate the selection effect. Note that the sign of the selection

contribution depends on the covariance between α and β, and thus could be negative. Moreover,

if α instead were an undesirable trait to consumers, then the selection effect may also be negative.

The congestion effect similarly does not have to be negative. We allow for positive spillovers by

ρ > 0.

We can interpret various empirical observations through this model:

• For hospital value-added (Chandra et al., 2016), Nj positively selects on hospital quality

αj . This is likely true for most value-added settings.

• For teacher value-added, it is possible (Lazear, 2001; Barrett and Toma, 2013; Mehta,

2019) that teachers may prefer smaller classes, and school administrators may reward good
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teachers by letting them teach smaller classes. In the lens of this model, Nj negatively

selects on quality.64

• In integenerational mobility, Nj is the number of poor minority households. HigherNj leads

to oppressive institutions and residential segregation. We can interpret these pernicious

effects as a negative ρ.

However, this model does not capture all channels through which θj can be correlated with σj .

For instance, the following is difficult to map to the discrete choice model.

• In unbalanced panel data settings, the length of the observed period for a unit—which

relates to the precision of the unit’s estimated fixed effect—may be correlated with the

underlying fixed effect. This observation dates at least to Olley and Pakes (1996), who note

that in a firm panel, those firms with shorter observed period are probably less productive

and have to shut down sooner. For value-added modeling of nursing homes, Einav et

al. (2022) note that patients with shorter stays at nursing homes typically experience an

adverse health event, including death. Such events are presumably more likely for worse

nursing homes, again inducing a correlation between nursing home qualities and the sample

sizes used to estimate them. Similarly, for teacher value-added, Bruhn et al. (2022) find

that teachers who have shorter observed spells in administrative datasets tend to be worse

and have noisier value added estimates.

A.6. Interpretation of empirical Bayes sampling model. When the empirical Bayes sampling

model fails to hold, empirical Bayes methods do not precisely mimic an oracle Bayesian’s decision.

However, in many cases, we can still interpret the empirical Bayes decision rules. In most such

cases, the interpretation is in terms of emulating an oracle Bayesian who is constrained. The oracles

are constrained either by removing its access to certain information or by restricting its decisions

to a particular class. We will consider two scenarios when such an interpration is natural.

A.6.1. Interpretation when independence of units fails. We consider the interpretation of the sam-

pling model (2.3) when it is misspecified. Recall that we assume (Yi, θi, σi) are sampled indepen-

dently across i, with Yi | θi, σi ∼ N (θi, σi). This sampling model can fail in two ways. First, it is

possible that Y1:n | θ1:n, σ1:n are correlated but still multivariate Gaussian. Second, it is possible

that (θi, σi) are correlated across i. Here, we limit our discussion to Decision Problem 1.

Let Y = (Y1, . . . , Yn) and θ = (θ1, . . . , θn)
′. Let us assume instead that

Y | θ,Σ ∼ N (θ,Σ)

where diag(Σ) = [σ21, . . . , σ
2
n] and the variance-covariance matrix Σ is known. Let Q0 be the joint

distribution of θ | Σ. Now, the oracle Bayesian—who knows Q0—would use EQ0 [θi | Y ,Σ] as
their decision rule. The empirical Bayesian can similarly emulate that oracle Bayes decision rule

by estimating Q0. If the empirical Bayesian is willing to assume that the location-scale assumption

64Though the channel is not through student-level discrete choice of teachers.
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(2.6) describes Q0:

(θi | Σ) ∼ (θi | σ1:n) ∼ G0

(
· −m0(σi)

s0(σi)

)
,

then the empirical Bayesian can similarly implement close, and output estimates of EQ0 [θi | Y ,Σ].
We should caveat that the npmle step no longer maximizes the full likelihood of Y with respect

to G0, but a quasi-likelihood that averages over the log-likelihood of each Yi separately, ignoring

their joint distribution.

Now, let us consider what interpretation our method has when we erroneously assume either

the independence of Yi across i or that θi | Σ are independent across i. The latter independence

may fail, for instance, when the populations index places, and the θi’s are thought to be spatially

correlated (e.g., in Müller and Watson, 2022). Consider the class of separable decision rules, where

the forecast for θi can depend solely on Yi, σi:

δi(Y , σ1:n) = δi(Yi, σi).

Consider a constrained oracle Bayesian who is forced to use a separable decision rule. They would

use EQ0 [θi | Yi, σi]. Note that this constrained decision rule depends on Q0 only through the

distribution θi | σi (and not θi | Σ). Thus, under the location-scale assumption

(θi | σ1:n) ∼ G0

(
· −m0(σi)

s0(σi)

)
,

close-based methods emulate this oracle Bayesian constrained to separable decision rules. Of

course, the resulting empirical Bayesian decision rule is not separable (since Ĝn presumably depends

on all the data), but it seeks to emulate the best possible separable rule. This interpretation in

terms of emulating a constrained oracle Bayesian holds regardless of the joint distribution of Y or

of θ, so long as our specification of the marginal distribution holds. Of course, our regret results

do not immediately carry over to this setting.

A.6.2. Interpretation with additional covariates Xi. Additionally, we may also have population-

level covariates Xi. Let us maintain that Xi does not predict the noise in Yi:

Yi y Xi | θi, σi.

Here, we will discuss two questions. First, how do we handle covariates? Second, what is the

difference between using Xi and σi—is the standard error simply a covariate?65

On the first question, there are two ways of incorporating covariates, under similar but distinct

assumptions. First, close-methods can be extended to incorporate covariates by augmenting (2.6)

65Covariates are considered in Ignatiadis and Wager (2019). They assume a homoskedastic setting where the
prior depends on some covariates Xi: i.e., in our notation, θi | Xi ∼ N (m(Xi), s

2
0) and Yi | θi ∼ N (θi, σ

2).
Starting from our setting (2.6), to obtain theirs, one would (i) restrict to homoskedasticity σi = σ, (ii)
consider some covariates Xi that predict θi, and model θi | Xi as a conditional location—but not scale—
family, and (iii) restrict G0 ∼ N (0, 1).
Their minimax lower bound on the regret uses essentially the same argument as we do in Theorem 2.
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to incorporate covariates. That is, we can instead assume that

P0(θi ≤ t | Xi, σi) ∼ G0

(
t−m0(σi, Xi)

s0(σi, Xi)

)
(A.1)

and estimate m0, s0 nonparametrically. Instead of being one-dimensional nonparametric regression

problems, they are now (d+1)-dimensional nonparametric problems. Under the same Hölder-type

smoothness conditions, the corresponding regret rate replaces n
− 2p

2p+1 with n
− 2p

2p+1+d . Second, as

we do in the empirical exercises, one could consider a strategy of residualizing against Xi in some

arbitrary way, performing empirical Bayes, and undoing the residualization. This strategy dates

back to Fay and Herriot (1979). That is, with raw data Ỹi for parameter ϑi, we can consider

forming the residuals Yi = Ỹi − b(Xi) and θi = Yi − b(Xi), and perform empirical Bayes methods

on (Yi, θi, σi). At a high level, we can rationalize this strategy as mimicking a constrained oracle

Bayesian who solely has access to Yi, σi, who knows the joint distribution of (θi, σi), but who does

not have access to Xi. Note that this interpretation is coherent regardless of the transformation

b(Xi), allowing us to be more blasé about modeling Xi than the previous approach. In particular,

choosing b(Xi) = 0 ignores the covariate entirely; the resulting empirical Bayes procedure mimics

an oracle that does not have access to Xi. Of course, when we impose the location-scale assumption

(2.6) on (θi, σi), different b(Xi) gives rise to different—and possibly mutually exclusive—underlying

models on (ϑi, σi, Xi).

On the second question, in an operational sense, σi is simply another covariate. σi is not

particularly special in the assumption (A.1), and one interpretation of close is treating σi precisely

as a covariate to be regressed out. However, σi does occupy a special place in the statistical structure

of the problem. The likelihood of the data, Yi | θi, σi, depends on σi but not Xi. This special role

of σi means that we must treat it with more care so that the resulting procedure has a coherent

interpretation. If we wanted to ignore covariates Xi, we can imagine an oracle Bayesian who does

not have access to Xi, and the resulting empirical procedure simply mimics that constrained oracle.

This line of reasoning does not work with σi, since any oracle Bayesian—constrained or otherwise—

must have access to σi. As a result, we cannot avoid the problem of modeling θi | σi as easily as

we could have avoided modeling θi | Xi, σi by changing the goalpost.

A.7. Alternatives to close.

A.7.1. Alternative methods. Let us turn to a few specific alternative methods that consider failure

of prior independence. We argue that they do not provide a free-lunch improvement over our

assumptions. At a glance, these alternative methods have properties summarized in Table 2.

Alternative 1 (Working with t-ratios). We may consider normalizing σi away by working with

t-ratios Ti ≡ Yi
σi
| (σi, θi) ∼ N (θi/σi, 1) . The resulting problem is homoskedastic by construction.

It is natural to consider performing empirical Bayes shrinkage assuming that θi
σi

i.i.d.∼ H0, and use,

say, σiEĤn

[
θi
σi
| Ti
]
as an estimator for the posterior mean of θi (Jiang and Zhang, 2010). However,

such an approach approximates the optimal decision rule within a restricted class on a different

objective.
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Table 2. Properties of alternative methods

t-ratios Var. stab.
transforms

Random σ̂i SURE

Restrict to a class of procedures ✗ ✗
Change the loss function ✗ ✗
Require access to micro-data ✗
Assume θi is independent from some other
known nuisance parameter, e.g. ni

✗ ✗

Parametric restrictions on the micro-data ✗ ✗

Let us restrict decision rules to those of the form δi,t-stat(Yi, σi) = σih(Yi/σi). The oracle Bayes

choice of h is h⋆(Ti) =
E[σiθi|Ti]
E[σ2

i |Ti]
. However, h⋆ is not the posterior mean of θi/σi given the t-ratio Ti,

unless σ2i y θi/σi. On the other hand, the loss function that does rationalize the posterior mean

h(Ti) = E[θi/σi | Ti] is the precision-weighted compound loss L(δ, θ1:n) = 1
n

∑n
i=1 σ

−2
i (δi − θi)2.

Thus, rescaling posterior means on t-ratios achieves optimality for a weighted objective among a

restricted class of decision rules δi,t-stat. ■

Alternative 2 (Variance-stabilizing transforms). Second, we may consider a variance-stabilizing

transform when the underlying micro-data are Bernoulli and θi is a Bernoulli mean (Efron and

Morris, 1975; Brown, 2008). Specifically, we rely on the asymptotic approximation

√
ni(Yi − θi)

d−→
ni→∞

N (0, θi(1− θi)).

A variance-stabilizing transform can disentangle the dependence: Let Wi = 2arcsin(
√
Yi) and

ωi = 2arcsin(
√
θi), and, by the delta method,

√
ni (Wi − ωi)

d−→
ni→∞

N (0, 1). Thus, approximately, Wi | ωi, ni ∼ N
(
ωi,

1

ni

)
.

One might consider an empirical Bayes approach on the resulting Wi. Note that Wi may still

violate prior independence, since ωi may not be independent of ni. Moreover, squared error loss on

estimating ωi = 2arcsin(
√
θi) is different from squared error loss on estimating θi. We do not know

of any guarantees for the loss function on θi,
1
n

∑n
i=1(δi − sin2(ωi/2))

2, when we perform empirical

Bayes analysis on ωi. ■

Alternative 3 (Treating the standard error as estimated). Lastly, if the researcher has access to

micro-data, Gu and Koenker (2017) and Fu et al. (2020) propose empirical Bayes strategies that

treat σi as noisy as well, in which we know the likelihood of (Yi, σi). This approach allows for

dependence between θi and σi but assumes independence between (θi, σi) and some other known

nuisance parameter. To describe their model, we introduce more notation. Let Yij , j = 1, . . . , ni,

denote the micro-data for population i, where, for each i, we are interested in the mean of Yij .

Let Yi denote their sample mean and S2
i denote their sample variance, where σ2i = S2

i /ni. Let σ
2
i0

denote the true variance of observations from population i.
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Both papers work under Gaussian assumptions on the micro-data. This parametric assumption66

on the micro-data—which is stronger than we require—implies that Yi y S2
i | (σi0, θi, ni) with

marginal distributions:

Yi | σi0, θi, ni ∼ N
(
θi,

σ2i0
ni

)
S2
i | σi0, θi, ni ∼ Gamma

(
ni − 1

2
,

1

2σ2i0

)
.

They then propose empirical Bayes methods treatingYi ≡ (Yi, S
2
i ) as noisy estimates for parameters

θi ≡ (θi, σ
2
i0). This formulation allows θi to have a flexible distribution, and thus allows for

dependence between θi and σ
2
i0. However, since the known sample size ni enters the likelihood of

Yi, this approach still assumes that ni y θi. ■

This discussion is not to say that close is necessarily preferable to these alternatives. It high-

lights that the possible dependence between θi and σi cannot be easily resolved. As summarized in

Table 2, existing alternatives compromise on optimality, use a different loss function, or implicitly

assume θi is independent from components of σ2i (e.g., ni). Of course, depending on the empirical

context, these may well be reasonable features.

In contrast, our approach models θi | σi directly via the location-scale assumption (2.6). A

natural question is whether other types of modeling may be superior—which we turn to next.

We argue that the location-scale model uniquely capitalizes on the appealing properties of the

npmle-based empirical Bayes approaches.

A.7.2. Alternative models for θi | σi. One alternative is simply treating the joint distribution of

(θi, σi) fully nonparametrically. For instance, an f -modeling approach with Tweedie’s formula67

implies that an estimate of the conditional distribution Yi | σi is all one needs for computing the

posterior means (Brown and Greenshtein, 2009; Liu et al., 2020; Luo et al., 2023). However, condi-

tional density estimation is a challenging problem, and most available methods do not exploit the

restriction that Yi | σi is a Gaussian convolution. Similarly, one could consider flexible parametric

66The parametric restriction on the micro-data Yij can be relaxed by appealing to the asymptotic distribution
of (Yi, S

2
i )—resulting in the Gaussian likelihood (Yi, S

2
i ) | θi,Σi ∼ N (θi,Σi). In general, however, Σi also

depends on ni and higher moments of Yij , which again may not be independent of θi.
67That is, the posterior mean can be written as a functional of the density of Y :

E[θi | Yi, σi] = Yi + σ2
i

d

dy
log f(y | σi)

∣∣∣∣
y=Yi

,

where f(y | σ) is the conditional density of Y | σ. Empirical Bayes approaches exploiting this formula
is known as f -modeling (Efron, 2014), since f usually denotes the marginal distribution of Y . This is in
contrast to g-modeling, which seeks to estimate the prior distribution of θi.
Brown and Greenshtein (2009) develop an f -modeling approach with a kernel smoothing density estimator
in the homoskedastic setting. Liu et al. (2020) extend this approach to a homoskedastic, balanced dynamic
panel setting, where the initial outcome for each unit acts as a known nuisance parameter, much like σi in our
case. Brown and Greenshtein (2009) and Liu et al. (2020) show that the squared error Bayes regret converges
to zero faster than the oracle Bayes risk. These guarantees do not imply regret rate characterizations similar
to those that we obtain. See Jiang and Zhang (2009) for additional discussion about the strengths of the
theoretical results in Brown and Greenshtein (2009) compared to npmle-based g-modeling approaches.
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g-modeling of θi | σi in the vein of the log-spline sieve of Efron (2016).68 This has the advantage

of estimating a smooth prior at the cost of having tuning parameters. We are not aware of regret

results for this approach.

If we commit to making some substantive restriction on the joint distribution of (θi, σi), it is fair to

ask why the conditional location-scale restriction (2.6) is necessarily preferable. However, if we wish

to capitalize on the theoretical and computational advantages of npmle, it is natural to consider

a class of procedures that transform the data in some way and use the npmle on the resulting

transformed data to estimate the prior distribution (Appendix A.7.3 gives a heuristic justification

for this strategy). If we wish to preserve the Gaussian location model structure on the transformed

data, then effectively we can only consider affine transformations (i.e., Z = a(σ) + b(σ)Y ) (shown

in Lemma A.2 below). If we further wish that Z obeys a Gaussian location model in which prior

independence holds (i.e., τ ≡ a(σ) + b(σ)θ is independent from ν ≡ b(σ)σ)—so that we can apply

npmle-based approaches assuming prior independence—then we have no other choice but to assume

(2.6). Thus, the conditional location-scale assumption is uniquely well-suited to capitalize on the

favorable properties of npmle already established in the literature, which we extend via Theorem 1.

Lemma A.2. Let Y ∼ N (θ, σ2) with known σ2. Consider a strictly increasing and differentiable

function g(·). Let Z = h(Y ). Then the corresponding family of distributions of Z is a natural

exponential family if and only if h(Y ) = a+ bY .

Proof. The “if” part (⇐=) is immediate. We focus on the “only if” ( =⇒ ) part. Writing the

distribution of Y as an exponential family,

pY (y) ∝ exp

(
y
θ

σ2
+ g(y, σ) +A(θ, σ)

)
for some g(y, σ) and A(θ, σ). Note that we have

pZ(z) = pY (y)

∣∣∣∣dydz
∣∣∣∣ = pY (h

−1(z))
dh−1(z)

dz

Thus, writing in exponential family form, for some g̃, we have that

pZ(z) ∝ exp

(
h−1(z)

θ

σ2
+ g̃(z, σ) +A(θ, σ)

)
Suppose Z follows a natural exponential family with natural parameter q(θ;σ). Then we can write

h−1(z)
θ

σ2
= zq(θ;σ) + v(θ, σ) + w(z).

Since h is strictly monotone and differentiable, so is h−1. Taking the z-derivative of both sides:

dh−1

dz
=
σ2

θ
q(θ;σ) + w′(z)

σ2

θ
.

68Generalizing Efron (2016), we may model g(θ | σ) ∝ exp(
∑J

j=1 aj(σ;αj)pj(θ)) where p1, . . . , pJ are flexible

sieve expansions (e.g. spline basis functions) and aj(σ;αj) are flexible functions indexed by finite-dimensional
parameters αj . The parameters α1, . . . , αJ can be estimated by maximizing the penalized likelihood of Y1:n.
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Since the left-hand side does not depend on θ, it follows that

q(θ;σ) + w′(z)

θ

is free of θ for all z. Suppose w′(z) is not constant, then for z1 ̸= z2 and w′(z1) ̸= w′(z2), the

difference is θ-dependent

q(θ;σ) + w′(z1)

θ
− q(θ;σ) + w′(z2)

θ
=
w′(z1)− w′(z2)

θ
.

Hence w′(z) is a constant. As a result, dh
−1

dz does not depend on z, and hence h(z) = a+ bz. □

A.7.3. Model-free interpretation of close-npmle. When the location-scale model fails to hold, it

remains sensible to consider estimating the npmle on an affine transformation of the data, as in

close-npmle.

Let us first consider a given affine transformation of the data—not necessarily τ = Z−m0(σ)
s0(σ)

—into

(Zi, τi, νi) for which τi | νi ∼ H(i), and ask why npmle is reasonable. In population, npmle seeks to

minimize the average Kullback–Leibler (KL) divergence between the distribution of the estimates

Zi and the distribution implied by the convolution H ⋆N (0, ν2i ):

max
H

1

n

n∑
i=1

EZi∼fH(i),νi
[log fH,νi(Zi)] , equivalent to min

H

1

n

n∑
i=1

KL
(
fH(i),νi ∥ fH,νi

)
,

where fH,ν is the density of the convolution H ⋆ N (0, ν2). As shown by Jiang and Zhang (2009)

and Jiang (2020) (see Appendix C.3), the regret in mean-squared error under a misspecified prior

τi ∼ H is upper bounded by the average squared Hellinger distance between the distribution of the

data and the distribution implied by H. The average Hellinger distance is further upper bounded

by the average KL divergence:

1

n

n∑
i=1

h2
(
fH(i),νi , fH,νi

)
≤ 1

n

n∑
i=1

KL
(
fH(i),νi ∥ fH,νi

)
.

In this sense, even under misspecification (H(i) ̸= H(j)), npmle chooses a common distribution H

that minimizes an upper bound of regret.

Now that we have a justification for the npmle, let us consider the transformation we would like

to choose. It is reasonable, then, to choose the affine transform (a(σ), b(σ)) so that the resulting

conditional distributions H(i) of the transformed parameter τi | σi are similar—under some distance

measure. Doing so does not recover prior independence on the transformed data but limits the

extent of non-independence. Choosing a(σ), b(σ) to ensure that τi | σi has the same first two

moments is intuitively reasonable, and actually has a formal interpretation in terms of information-

theoretic divergences and optimal transport metrics, at least in a large-σ regime (Chen and Niles-

Weed, 2022).
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Part 2. Additional empirical results

Appendix B. Additional empirical exercises

2.0 1.8 1.6 1.4 1.2

0.000

0.002

0.004
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0.008

Mean income rank
Mean income rank [Black]
Mean income rank [white]

2.0 1.8 1.6 1.4 1.2 1.0

0.005

0.000

0.005

P(Income ranks in top 20)
P(Income ranks in top 20 | Black)
P(Income ranks in top 20 | white)

2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
log10 (Standard error i)

0.004

0.002

0.000

Incarceration
Incarceration [Black]
Incarceration [white]

Figure B.1. Estimated conditional variance s20(σ), binned into deciles, with
95% uniform confidence intervals shown.

B.1. Positivity of s0(·) in the Opportunity Atlas data. In the Opportunity Atlas data, we

often observe that the estimated conditional variance is negative: ŝ20 < 0. To test if this is due to

sampling variation or underdispersion of the Opportunity Atlas estimates relative to the estimated

standard error, we consider the following upward-biased estimator of s20(σi). Without loss, let us

sort the Yi, σi by σi, where σ1 ≤ · · · ≤ σn. Let Si = 1
2

[
(Yi+1 − Yi)2 − (σ2i + σ2i+1)

]
. Note that

E[Si | σ1:n] =
1

2
E[(θi+1−θi)2 | σ1:n] =

s20(σi+1) + s20(σi)

2
+
1

2
(m0(σi+1)−m0(σi))

2 ≥ s20(σi+1) + s20(σi)

2
.

Hence Si is an overestimate of the successive averages of s0(σ). Figure B.1 plot the estimated

conditional expectation of Si given σi, using a sample of (S1, S3, S5, . . .) so that the Si’s used

are mutually independent. We see that for many measures of economic mobility, we can reject

E[Si | σi] ≥ 0, indicating some overdispersion in the data.
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P(Income ranks in top 20 | Black male)
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Incarceration [white male]

Incarceration [Black male]

Column median

85.0 88.4 91.4 91.7 91.8 91.7

87.0 90.3 94.2 95.0 95.1 94.9

81.9 88.5 93.2 93.4 93.5 92.9

89.4 92.3 93.5 94.9 94.9 94.7

82.9 85.9 92.6 93.6 93.7 93.6

57.7 80.8 91.4 92.8 92.9 92.9

74.6 80.3 93.8 94.9 94.9 94.8

46.0 53.0 95.4 97.8 97.5 97.2

69.6 75.7 90.2 93.5 93.6 93.4

36.8 44.8 94.4 97.5 97.0 96.6

50.6 58.9 88.2 91.2 91.0 90.7

73.9 80.7 91.2 96.3 96.8 95.1

47.8 52.4 96.4 97.9 97.4 97.2

59.6 64.0 93.2 97.4 97.6 96.8

41.7 49.3 96.0 96.6 96.3 96.2

69.6 80.3 93.2 94.9 94.9 94.8

What % of Naive-to-Oracle MSE gain do we capture?

Figure B.2. Additional close-npmle variants for the calibrated simulation
in Section 5. Here the results average over 100 replications.

B.2. Robustness checks for the calibration exercise in Section 5. In Figure B.2, we eval-

uate two variants of close-npmle. The first variant (column 4) uses an estimator for s0(·) that

smoothes the difference (Y − m̂(σ))2 − σ2, rather than smoothing (Y − m̂(σ))2 and then subtract-

ing σ2. Since local linear regression suffers from bias coming from the convexity of the underlying

unknown function, smoothing the difference can perform better, as the convexity bias differences

out. The second variant (column 6) projects the estimated npmle Ĝn to the space of mean zero

and variance one distributions, by normalizing by its estimated first and second moments. Neither

variant performs appreciably differently from the main version of close-npmle (column 5) that

we demonstrate in the main text.

B.3. Simulation exercise setup. This section describes the details of the simulation exercise in

Section 5. We restrict to the 10,109 tracts within the twenty largest Commuting Zones. Tracts

with missing information are dropped for each measure of mobility. Specifically, the simulated

data-generating process is as follows:

(Sim-1) Residualize Ỹi against some covariates Xi to obtain β and residuals Yi. Estimate the

conditional moments m0, s0 on (Yi, σi) via local linear regression, described in Appendix G.
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(Sim-2) Partition σ into vingtiles. Within each vingtile j, estimate an npmle Gj over the data(
Yi−m0(σi)
s0(σi)

, σi
s0(σi)

)
and normalize Gj to have zero mean and unit variance. Sample τ∗i | σi ∼ Gj if

observation i falls within vingtile j.

(Sim-3) Let ϑ∗i = s0(σi)τ
∗
i +m0(σi) + β′Xi and let Ỹ ∗

i | θ∗i , σi ∼ N (θ∗i , σ
2
i ).

The estimated β,m0, s0 will serve as the basis for the true data-generating process in the simu-

lation, and as a result we do not denote it with hats.

The covariates used are poverty rate in 2010, share of Black individuals in 2010, mean household

income in 2000, log wage growth for high school graduates, mean family income rank of parents,

mean family income rank of Black parents, the fraction with college or post-graduate degrees in

2010, and the number of children—and the number of Black children—under 18 living in the given

tract with parents whose household income was below the national median. These covariates are

included in Chetty et al.’s (2020) publicly available data, and these descriptions are from their

codebook. This set of covariates is not precisely the same as what is used in Bergman et al.

(2023). Bergman et al. (2023) additionally use economic mobility estimates for a later birth cohort,

which are not included in the publicly released version of the Opportunity Atlas. The “number

of children” variables are used by (Chetty et al., 2020) as a population weighting variable; they

contain some information on the implicit micro-data sample sizes ni.
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-3 19 38 39 65 96 70 70 101
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28 67 81 88 76 97 87 87 100

60 71 71 75 85 98 89 90 99

30 59 80 89 78 94 87 87 100

-125 4 53 59 45 93 72 73 98

29 50 60 63 70 83 88 90 96

-6 33 92 96 46 60 95 96 99

23 48 71 73 70 80 90 94 96

-8 29 94 97 37 51 95 97 98

-6 34 69 70 51 62 90 97 92

63 78 93 98 76 87 94 96 99

42 54 93 96 47 56 95 97 98

44 61 94 97 61 71 95 97 99

25 43 88 90 41 51 94 97 96

28 50 80 88 65 83 90 94 99

What % of Naive-to-Oracle MSE gain do we capture?

Figure B.3. Analogue of Figure 4 for the data-generating process in Appen-
dix B.4. Here the results average over 100 replications.
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B.4. Different Monte Carlo setup. We have also conducted a Monte Carlo exercise where we

replace (Sim-2) with the following step:

• For each σi, let

αi =
1

2
+

1

2

m0(σi)−minim0(σi)

maxim0(σi)−mini(σi)
∈ [1/2, 1]

We sample τ∗i | σi as a scaled and shifted Weibull distribution with shape αi. The scaling

and translation ensures that τi | σi has mean zero and variance one. Because we choose the

Weibull distribution, the shape parameter αi corresponds exactly to α in Assumption 2.

Our choices of αi implies that τi | σi has thicker tails than exponential and does not have

a moment-generating function.

The Weibull distribution has thicker tails and is skewed, and as a result, npmle-based methods tend

to greatly outperform methods based on assuming Gaussian priors. Figure B.3 show the analogue

of Figure 4 for this data-generating process. Indeed, we see that independent-npmle improves

over independent-gauss considerably, and similarly for close-npmle and oracle-gauss.

B.5. MSE in validation exercise with coupled bootstrap. We compare empirical Bayes pro-

cedures for the squared error estimation problem (Decision Problem 1), in the setting of the vali-

dation exercise in Section 5. Since this is an empirical application on real, rather than synthetic,

data, we no longer have access to oracle estimators. As a result, for the relative MSE performance,

we normalize by a different benchmark. We can think of the performance gain of independent-

gauss over naive as the value of doing basic, standard empirical Bayes shrinkage. We normalize

each method’s estimated MSE improvement against naive as a multiple of this “value of basic

empirical Bayes.” Figure B.4(a) shows the resulting relative performance. Since our notion of rel-

ative performance has changed, we use a different color scheme. A value of 1 means that a method

does exactly as well as independent-gauss, and a value of 2 means that, relative to naive, a

method doubles the gain of basic empirical Bayes. Performance on a non-relative scale is shown in

Figure B.4(b).

We find that our empirical patterns from the calibrated simulation Figure 4 mostly persists

on real data. In particular, independent-npmle offers small improvements over independent-

gauss. Nevertheless, close-npmle continues to dominate other methods. Across the definitions

of ϑi, close-npmle generates a median of 180% the value of basic empirical Bayes. That is, on

mean-squared error, moving from independent-gauss to close-npmle is about half as valuable

as moving from naive to independent-gauss. For our running example (top-20 probability

for Black individuals), moving from independent-gauss to close-npmle is more valuable than

moving from naive to independent-gauss. If practitioners find using the standard empirical

Bayes method to be a worthwhile investment over using the raw estimates directly, then they may

find using close-npmle over independent-gauss to be a similarly worthwhile investment.

B.6. Empirical Bayes pooling over all Commuting Zones in validation exercise. Here,

we repeat the exercise in Figure 5, but we now estimate empirical Bayes methods pooling over all
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(a) Normalized performance

Na
ive

In
de

p-
G

au
ss

In
de

p-
NP

M
LE

CL
O

SE
-N

PM
LE

Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Column median

0.0 1.0 1.0 1.1

0.0 1.0 1.0 1.0

0.0 1.0 1.0 1.2

0.0 1.0 1.0 1.0

0.0 1.0 1.0 1.2

0.0 1.0 1.8 2.5

0.0 1.0 1.0 1.1

0.0 1.0 1.1 2.2

0.0 1.0 1.0 1.2

0.0 1.0 1.2 2.4

0.0 1.0 1.1 2.1

0.0 1.0 1.1 1.8

0.0 1.0 1.3 1.9

0.0 1.0 1.2 2.3

0.0 1.0 1.1 1.8

On MSE, how much do we gain over Naive as a multiple of Indep-Gauss's gain over Naive?

(b) Performance difference against naive

0.002 0.000 0.002 0.004 0.006
MSE improvement over Naive, RB, Naive RB, Method (percentage point or percentile rank)

Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Naive
Indep-Gauss
Indep-NPMLE
CLOSE-NPMLE

Notes. In panel (a), each column is an empirical Bayes strategy that we consider, and each
row is a different definition of θi. The table shows relative performance, defined as the
squared error improvement over naive, normalized as a multiple of the improvement of
independent-gauss over naive. By definition, such a measure is zero for naive and one
for independent-gauss. The last row shows the column median. The mean-squared error
estimates average over 100 coupled bootstrap draws. For the variable incarceration for
white individuals, the strategy independent-gauss underperform naive, and the resulting
ratio is thus undefined.
Panel (b) shows the difference in MSE against naive. □

Figure B.4. Estimated MSE Bayes risk for various empirical Bayes strategies
in the validation exercise.

Commuting Zones. We still pick the top third of every Commuting Zone. Our first exercise repeats

Figure 5 in this setting, shown in Figure B.5. The results are extremely similar.
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(a) Estimated performance of close-npmle, independent-gauss, and naive

0 10 20 30 40 50 60
Performance (average i among selected, percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

CLOSE-NPMLE
Independent Gaussian
Naive
E[ ] ±  SD( )

(b) Estimated performance difference relative to naive

2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.5

38.638.1

49.449.4

35.434.7

18.618.5

23.523.1

9.97.2

22.421.2

9.36.1

4.44.0

3.42.4

7.75.7

6.04.0

15.211.9

CLOSE-NPMLE
Independent Gaussian
Naive (zero)

(c) Estimated performance difference relative to picking uniformly at random

0 1 2 3 4 5 6 7 8
Performance difference relative to picking uniformly at random (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.5

38.638.1

49.449.4

35.434.7

18.618.5

23.523.1

9.97.2

22.421.2

9.36.1

4.44.0

3.42.4

7.75.7

6.04.0

15.211.9

CLOSE-NPMLE
Independent Gaussian
Naive
[0,  SD( )]

Notes. These figures show the estimated performance of various decision rules over 100 coupled bootstrap draws.
Performance is measured as the mean ϑi among selected Census tracts. All decision rules select the top third of
Census tracts within each Commuting Zone. Figure (a) plots the estimated performance, averaged over 100 coupled
bootstrap draws, with the estimated unconditional mean and standard deviation shown as the grey interval. Figure
(b) plots the estimated performance gap relative to naive, where we annotate with the estimated performance for
close-npmle and independent-gauss. Figure (c) plots the estimated performance gap relative to picking uniformly
at random; we continue to annotate with the estimated performance. The shaded regions in Figure (c) have lengths
equal to the unconditional standard deviation of the underlying parameter ϑ. □

Figure B.5. Performance of decision rules in top-m selection exercise
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Separately, we consider the version of this exercise without covariates in Figure B.6. We see

that covariates are extremely important for the performance of independent-gauss, as it fre-

quently underperforms naive without covariates.69 By comparison, they are less important for the

performance of close-npmle, as σi contains a lot of the signal in the tract-level covariates.

B.7. The tradeoff between accurate targeting and estimation precision. In this section,

we investigate the tradeoff between accurate targeting and estimation precision. That is, suppose

θi, Yi, σi and ϑi,Υi, ςi are two sets variables corresponding to two measures of economic mobility.

For instance, perhaps θi is mean rank for Black individuals and ϑi is mean rank pooling over

all individuals. Suppose the decision maker would like to select populations with high θi, but the

estimates Yi are noisier than the estimates Υi. It is plausible that screening on posterior means for

ϑi might outperform screening on posterior means for θi.

We investigate this question via coupled bootstrap in the Bergman et al. (2023) exercise. In

particular, we let the subscript b (resp. w) denote quantities for Black (resp. white) individuals.

We assume that Yib y Yiw | θib, θiw. For each tract, we construct πi = nib/ni, where ni (resp.

ni) is the number of (resp. Black) children under 18 living in the given tract with parents whose

household income was below the national median.70 Let θi = πiθib+(1−πi)θiw be a pooled measure,

where

Yi = πiYib + (1− πi)Yiw | θi ∼ N (0, π2i σ
2
ib + (1− πi)2σ2iw).

Each coupled bootstrap draw adds and subtracts noise Zib, Ziw to Yib and Yiw, where Zib y Ziw.

Bootstrap draws for Yi are constructed by taking the πi-combination of bootstrap draws for Yib, Yiw.

Here, we investigate whether screening tracts based on posterior mean estimates for θiw or θi

generates better decisions in terms of θib, owing to the precision in Yiw and Yi. Figure B.7 shows

estimated performances of different empirical Bayes methods by different proxy variables that the

screening targets. For each measure of economic mobility for Black individuals, dots on the thick

black dashed line correspond to screening on the corresponding θib. Dots on the red (resp. blue)

dashed line correspond to screening on θiw (resp. θi). We see that for all three measures of economic

mobility, using close-npmle to screen on the original parameter θib performs best. In other words,

the benefits of higher precision are insufficient to offset inaccurate targeting.

69This is in part since our implementation of independent-gauss uses weighted means for estimating the
prior parameters, worsening the misspecification. See Footnote 54.
70This is the demographic weighting variable used in Chetty et al. (2020). We use this weighting to construct
a pooled variable, rather than use the pooled variable in the Opportunity Atlas directly for the following
reasons. The pooled estimates of Chetty et al. (2020) unfortunately frequently lies outside the convex hull
of the white and Black estimates, making it difficult to infer the relative weights for Black individuals in a
tract.
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(a) Estimated performance of close-npmle, independent-gauss, and naive

0 10 20 30 40 50 60
Performance (average i among selected, percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

CLOSE-NPMLE
Independent Gaussian
Naive
E[ ] ±  SD( )

(b) Estimated performance difference relative to naive

2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.2

51.051.0

38.737.3

48.848.7

35.533.6

18.518.0

22.521.8

9.84.3

21.519.0

9.13.3

4.13.4

3.31.1

7.24.8

5.91.6

14.510.4

CLOSE-NPMLE
Independent Gaussian
Naive (zero)

(c) Estimated performance difference relative to picking uniformly at random

4 2 0 2 4 6 8
Performance difference relative to picking uniformly at random (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.2

51.051.0

38.737.3

48.848.7

35.533.6

18.518.0

22.521.8

9.84.3

21.519.0

9.13.3

4.13.4

3.31.1

7.24.8

5.91.6

14.510.4

CLOSE-NPMLE
Independent Gaussian
Naive

Notes. These figures show the estimated performance of various decision rules over 100 coupled bootstrap draws.
There are no covariates to residualize against. Performance is measured as the mean ϑi among selected Census
tracts. All decision rules select the top third of Census tracts within each Commuting Zone. Figure (a) plots the
estimated performance, averaged over 100 coupled bootstrap draws, with the estimated unconditional mean and
standard deviation shown as the grey interval. Figure (b) plots the estimated performance gap relative to naive,
where we annotate with the estimated performance for close-npmle and independent-gauss. Figure (c) plots the
estimated performance gap relative to picking uniformly at random; we continue to annotate with the estimated
performance. The shaded regions in Figure (c) have lengths equal to the unconditional standard deviation of the
underlying parameter ϑ. □

Figure B.6. Performance of decision rules in top-m selection exercise (No covariates)
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0.5 0.0 0.5 1.0 1.5 2.0
Performance difference relative to screening on raw estimates for Black 

 (percentile rank or percentage point)

Mean income rank [Black]

P(Income ranks in top 20 | Black)

Incarceration [Black]

Screen on estimates for Black
Screen on estimates pooling over Black and white
Screen on estimates for white
CLOSE-NPMLE
Naive
Independent Gaussian

Notes. Estimated performance for different empirical Bayes methods by different proxy pa-
rameters. The performance of screening based on the raw Yib is normalized to zero. All
results are over 100 coupled bootstrap draws. □

Figure B.7. Performances of strategies that screen on posterior means for
more precisely estimated parameters

Part 3. Regret control proofs

Appendix C. Setup, assumptions, and notation

We recall some notation in the main text, and introduce additional notation. Recall that we

assume n ≥ 7. We observe (Yi, σi)
n
i=1, (Yi, σi) ∈ R× R>0 such that

Yi | (θi, σi) ∼ N (θi, σ
2
i )

and (Yi, θi, σi) are mutually independent. Assume that the joint distribution for (θi, σi) takes the

location-scale form (2.6)

θi | (σ1, . . . , σn) ∼ G0

(
θi −m0(σi)

s0(σi)

)
Define shorthands m0i = m0(σi) and s0i = s0(σi). Define the transformed parameter τi =

θi−m0i
s0i

,

the transformed data Zi =
Yi−m0i
s0i

, and the transformed variance ν2i =
σ2
i

s20i
. By assumption,

Zi | (τi, νi) ∼ N (τi, ν
2
i ) τi | ν1, . . . , νn

i.i.d.∼ G0.

Let η̂ = (m̂, ŝ) denote estimates of m0 and s0. Likewise, let η̂i = (m̂i, ŝi) = (m̂(σi), ŝ(σi)). For a

given η̂, define

Ẑi = Ẑi(η̂) = Ẑi(Zi, η̂) =
Yi − m̂i

ŝi
=
s0iZi +m0i − m̂i

ŝi
ν̂2i = ν̂2i (η̂) =

σ2i
ŝ2i
.

We will condition on σ1:n throughout, and hence we treat them as fixed.
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(a) Not residualized by covariates

(b) Residualized by covariates

Notes. This figure shows the estimated E[θ | σ] for mean income rank, pooling over all
demographic groups. This is the measure of economic mobility used by Bergman et al.
(2023). The estimation and the confidence band procedures are the same as those in Figure 1.
In panel (a), θi, Yi are defined as unresidualized measures of mean income rank. In panel
(b), we treat θi, Yi as residualized against a vector of tract-level covariates as specified in
Appendix B.3. □

Figure B.8. Estimated E[θ | σ] for mean income rank among those with
parents at the 25th percentile

For generic G and ν > 0, define

fG,ν(z) =

∫ ∞

−∞
φ

(
z − τ
ν

)
1

ν
G(dτ).
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Figure B.9. The analogue of Figure 1 where Yi, θi are treated as residualized
against a vector of covariates as specified in Appendix B.3.

0 1 2 3 4 5 6 7 8
Square root of estimated Bayes squared error risk (percentage point or percentile rank)

Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Oracle
Naive
Indep-Gauss
CLOSE-NPMLE

Figure B.10. Absolute mean-squared error risk of key methods for the cali-
brated simulation in Figure 4.

to be the marginal density of some mixed normal deviate Z | τ ∼ N (τ, ν2) with mixing distribution

τ ∼ G. As a shorthand, we write

fi,G = fG,νi(Zi) f ′i,G = f ′G,νi(Zi)

Let the average squared Hellinger distance be

h
2
(fG1,·, fG2,·) =

1

n

n∑
i=1

h2 (fG1,νi , fG2,νi) .
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For generic values η = (m, s) and distribution G, define the log-likelihood function

ψi(z, η,G) = ψi(z, (m, s), G) = log

∫ ∞

−∞
φ

(
Ẑi(η)− τ
ν̂i(η)

)
G(dτ) = log

(
ν̂i(η) · fG,ν̂i(η)(Ẑi(η))

)
Define

Subn(G) =

(
1

n

n∑
i=1

ψi(Zi, η0, G)−
1

n

n∑
i=1

ψi(Zi, η0, G0)

)
+

(C.1)

as the log-likelihood suboptimality of G against the true distribution G0, evaluated on the true,

but unobserved, transformed data Zi, νi.

Fix some generic G and η = (m, s). The empirical Bayes posterior mean ignores the fact that

G, η are potentially estimated. The posterior mean for θi = siτ +mi is

θ̂i,G,η = mi + siEG,ν̂i(η)[τ | Ẑi(η)].

Here, we define EG,ν [h(τ, Z) | z] as the function of z that equals the posterior mean for h(τ, Z)

under the data-generating model τ ∼ G and Z | τ ∼ N (τ, ν). Explicitly,

EG,ν [h(τ, Z) | z] =
1

fG,ν(z)

∫
h(τ, z)φ

(
z − τ
ν

)
1

ν
G(dτ).

Explicitly, by Tweedie’s formula,

EG,ν̂i(η)[τi | Ẑi(η)] = Ẑi(η) + ν̂2i (η)
f ′G,ν̂i(η)(Ẑi(η))

fG,ν̂i(η)(Ẑi(η))
.

Hence, since Ẑi(η) =
Yi−mi
si

,

θ̂i,G,η = Yi + siν̂
2
i (η)

f ′G,ν̂i(η)(Ẑi(η))

fG,ν̂i(η)(Ẑi(η))
.

Define θ∗i = θ̂i,G0,η0 to be the oracle Bayesian’s posterior mean. Fix some positive number ρ > 0,

define a regularized posterior mean as

θ̂i,G,η,ρ = Yi + siν̂
2
i (η)

f ′G,ν̂i(η)(Ẑi(η))

fG,ν̂i(η)(Ẑi(η)) ∨
ρ

ν̂i(η)

(C.2)

and define θ∗i,ρ = θ̂i,G0,η0,ρ correspondingly.

Lastly, we will also define

φ+(ρ) = φ−1(ρ) =

√
log

1

2πρ2
ρ ∈ (0, (2π)−1/2) (C.3)

so that φ(φ+(ρ)) = ρ. Observe that φ+(ρ) ≲
√
log(1/ρ).

C.1. Assumptions. Recall the assumptions we stated in the main text.
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Assumption 1. Let ψi(Zi, η̂, G) ≡ log
(∫∞

−∞ φ
(
Ẑi−τ
ν̂i

)
G(dτ)

)
be the objective function in (2.11),

ignoring a constant factor 1/ν̂i. We assume that Ĝn satisfies

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn) ≥ sup
H∈P(R)

1

n

n∑
i=1

ψi(Zi, η̂, H)− κn (3.2)

for tolerance κn

κn =
2

n
log

(
n√
2πe

)
. (3.3)

Moreover, we require that Ĝn has support points within [mini Ẑi,maxi Ẑi]. To ensure that κn is

positive, we assume that n ≥ 7 = ⌈
√
2πe⌉.71

Assumption 2. The distribution G0 is has zero mean, unit variance, and admits simultaneous

moment control with parameter α ∈ (0, 2]: There exists a constant A0 > 0 such that for all p > 0,

(Eτ∼G0 [|τ |p])
1/p ≤ A0p

1/α. (3.4)

Assumption 3. The variances (σ1:n, s0) admit lower and upper bounds:

σℓ < σi < σu and sℓ < s0(·) < su,

where 0 < σℓ, σu, s0ℓ, s0u <∞. This implies that 0 < νℓ ≤ νi = σi
s0(σi)

≤ νu <∞ for some νℓ, νu.

Assumption 4. Let CpA1
([σℓ, σu]) be the Hölder class of order p ≥ 1 with maximal Hölder norm

A1 > 0 supported on [σℓ, σu].
72 We assume that

(1) The true conditional moments are Hölder-smooth: m0, s0 ∈ CpA1
([σℓ, σu]).

Additionally, let β0 > 0 be a constant. Let V be a set of bounded functions supported on [σℓ, σu]

that (i) admits the uniform bound supf∈V∥f∥∞ ≤ CA1 and (ii) admits the metric entropy bound

logN(ϵ,V, ∥·∥∞) ≤ CA1,p,σℓ,σu(1/ϵ)
1/p.

We assume that the estimators for m0 and s0, η̂ = (m̂, ŝ), satisfy the following assumptions.

(2) For any ϵ > 0, there exists a sufficiently large C = C(ϵ), independently of n, such that for

all n,

P
(
max (∥m̂−m0∥∞, ∥ŝ− s0∥∞) > C(ϵ)n

− p
2p+1 (log n)β0

)
< ϵ.

71The constants κn also feature in Jiang (2020) to ensure that the fitted likelihood is bounded away from
zero. The particular constants in κn are chosen to simplify expressions and are not material to the result.
72We recall the definition of a Hölder class from van der Vaart and Wellner (1996), Section 2.7.1. We
specialize its definition to functions of one real variable. For an integer p, Hölder-p functions are (p − 1)-
times differentiable, with a Lipschitz continuous (p− 1)st derivative.

Definition 2. For some set X ⊂ R and constant A > 0, p > 0, let Cp
A(X ) be the set of continuous functions

f : X → R with ∥f∥(p) ≤ A. The norm ∥·∥(p) is defined as follows. Let p be the greatest integer strictly
smaller than p. Define

∥f∥(p) = max
k≤p

sup
x∈X

∣∣∣f (k)(x)∣∣∣+ sup
x,y∈X

∣∣∣f (p)(x)− f (p)(y)∣∣∣
|x− y|p−p .

We refer to Cp
A(X ) as a Hölder class of order p and ∥f∥(p) as the Hölder norm.
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(3) The nuisance estimators take values in V almost surely: P (m̂ ∈ V, ŝ ∈ V) = 1.

(4) The conditional variance estimator respects the conditional variance bounds in Assump-

tion 3: P
(
s0ℓ
2 < ŝ < 2s0u

)
= 1.

C.2. Regret control: result statement. Define the regret as the difference between the mean-

squared error of some feasible posterior means θ̂i,G,η against the mean-squared error of the oracle

posterior means

MSERegretn(G, η) =
1

n

n∑
i=1

(θ̂i,G,η − θi)2 −
1

n

n∑
i=1

(θ∗i − θi)2

=
1

n

n∑
i=1

(θ̂i,G,η − θ∗i )2 +
2

n

n∑
i=1

(θ∗i − θi)(θ̂i,G,η − θ∗i ) (C.4)

(C.4) decomposes the MSE regret into a mean term that equals the mean-squared distance between

the feasible posterior means and the oracle posterior means, as well as a term that is mean zero

conditional on the data Y1, . . . , Yn, since θ
∗
i − θi represents irreducible noise.

Fix sequences ∆n > 0 and Mn > 0. Define the following “good” event which we use in Theo-

rem F.1:

An =

{
∥η̂ − η∥∞ ≡ max(∥m̂−m0∥∞, ∥ŝ− s0∥∞) ≤ ∆n, Zn ≡ max

i∈[n]
(|Zi| ∨ 1) ≤Mn

}
. (C.5)

On the event An, the nuisance estimates η̂ are good, and the data Zi are not too large. Note that,

with ∆n = C1n
− p

2p+1 (log n)β0 ,

An = An(C1) ∩
{
Zn ≤Mn

}
,

where An is the event in (3.5).

Here, we prove the version of our result stated in the main text.

Theorem 1. Assume Assumptions 1 to 4 hold. Then, for any δ ∈ (0, 12), there exists universal

constants C1,H,δ > 0 and C0,H,δ > 0 such that (i) P(An(C1,H,δ)) ≥ 1− δ and that (ii) the expected

regret conditional on An(C1,H,δ) is dominated by the rate function

E
[
MSERegretn(Ĝn, η̂) | An(C1,H,δ)

]
≤ C0,H,δn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 . (3.6)

Proof. Immediately by Assumption 4(2–3), we can choose C1,H so that P(An(C1,H)) ≥ 1− δ. Let
∆n = C1,Hn

− p
2p+1 (log n)β0 and Mn = C(log n)1/α for some C to be chosen. Both C1,H and C may

depend on δ. Moreover, we can decompose

E
[
MSERegretn(Ĝn, η̂) | An(C1,H)

]
≤ 1

1− δ

E
[
MSERegretn(Ĝn, η̂)1(An)

]
+ E

MSERegretn(Ĝn, η̂)1(An(C1,H), Zn > Mn)︸ ︷︷ ︸
An\An




≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β0 +
1

n
(log n)2/α (Theorem F.1 and Lemma F.1)

≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β0
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Note that the application of Theorem F.1 and Lemma F.1 implicitly picks some constant for

Mn = C(log n)1/α. This concludes the proof. □

Corollary 1. Assume the same setting as Theorem 1. Suppose, additionally, for all sufficiently

large C1,H > 0, P(An(C1,H)) ≥ 1 − n−2. Then, there exists a constant C0,H > 0 such that the

expected regret is dominated by the rate function

BayesRegretn = E
[
MSERegretn(Ĝn, η̂)

]
≤ C0,Hn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 .

Proof. Let ∆n,Mn as in the proof of Theorem 1. Decompose

E[MSERegretn(Ĝn, η̂)] = E[MSERegretn(Ĝn, η̂)1(An)] + E[MSERegretn(Ĝn, η̂)1(A
C
n )]

= E[MSERegretn(Ĝn, η̂)1(An)] + E[MSERegretn(Ĝn, η̂)1(A
C
n ∪ {Zn > Mn})]

≤ E[MSERegretn(Ĝn, η̂)1(An)] + E[MSERegretn(Ĝn, η̂)1(A
C
n )]

+ E[MSERegretn(Ĝn, η̂)1(Zn > Mn)]

≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β0 +
2

n
(log n)2/α

(Theorem F.1 and Lemma F.1)

≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β0 ,

where our application of Lemma F.1 uses the assumption that P(An(C1,H)
C) = 1(∥η̂ − η∥∞ >

∆n) ≤ 1
n2 . □

Remark C.1 (Relaxing Assumption 4(4)). Note that the event An(C) implies s0ℓ/2 ≤ ŝ ≤ 2s0u

for all sufficiently large n > NC,s0ℓ,s0u,p,β0 . Since we condition on An(C) in Theorem 1, we can

drop Assumption 4(3) by only requiring (3.6) to hold for all sufficiently large n. This is a minor

modification since Theorem 1 is an upper bound on the convergence rate. On the other hand,

dropping Assumption 4(4) does affect regret control on the event AC
n (C1) below. Our truncation

rule for ŝ(·) in Appendix G ensures that ŝ(·) ≥ c
n . We show in Appendix G that this is sufficient

for the conclusion of Corollary 1.73 ■

C.3. Regret control: proof ideas. We now discuss the main ideas and the structure of our

argument. Existing work (Soloff et al., 2021) controls the following quantity, in our notation,

E
[
MSERegretτn(Ĝn, η0)

]
≡ E

[
1

n

n∑
i=1

(τ̂i,Ĝ∗
n,η0
− τ∗i )2

]
(C.6)

where τ̂i,Ĝn,η0 = EĜn,νi [τ | Zi] and Ĝ
∗
n is an approximate NPMLE on the data (Zi, νi)

n
i=1 (Theorem

8 in Soloff et al. (2021)).

They do so by showing that, loosely speaking,

73This lower bound on ŝ also adds enough regularity to avoid writing “sufficiently large n” for the statement
analogous to Theorem 1 as well. See Appendix G for details.
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(i) For some constant C and rate function δn, with high probability, the NPMLE achieves low

average squared Hellinger distance:

P
(
h
2
(fĜ∗

n,·
, fG0,·) > Cδ2n

)
<

1

n
.

This is because distributions G that achieve high likelihood—which G∗
n does by construction—tend

to have low average squared Hellinger distance with respect to G0 (Theorem 6 in Soloff et al.

(2021)). Roughly speaking, the rate function is linked to likelihood suboptimality (C.1):

δ2n ≍ max

(
Subn(Ĝ

∗
n),

1

n
(log n)

2α
2+α

+1

)
. (C.7)

(ii) For a fixed distribution G, the deviation from oracle between the regularized posterior means

(C.2) is bounded by the average squared Hellinger distance:

E[(τ̂i,G,η0,ρn − τ∗i,ρn)
2] ≲ (log(1/ρn))

3h
2
(fG,·, fG0,·). (C.8)

Therefore, we should expect that the rate attained is log(1/ρn)
3δ2n, subjected to resolving the

following two issues.

(iii) Additional arguments can handle the difference between (C.8) and (C.6).

(iv) Additional empirical process arguments can handle the fact that Ĝ∗
n is estimated.

Our proof adapts this argument, where the key challenge is that we only observe (Ẑi, ν̂i) instead

of (Zi, νi). As an outline,

• Appendix D (Theorem D.1 and Corollary D.1) establishes that Ĝn, estimated off (Ẑi, ν̂i),

achieves high likelihood (i.e., low Subn(Ĝn)) on the data (Zi, νi), with high probability. This is

an oracle inequality in the sense that it bounds the performance degredation of Ĝn relative to a

setting where η0 is known.

• Appendix E (Theorem E.1 and Corollary E.2) establishes that Ĝn, with high probability,

achieves low Hellinger distance. This is a result of independent interest, as it characterizes the

quality of fĜn,νi as an estimate of the true density fG0,νi .

• Appendix F (Theorem F.1) establishes that the regret of θ̂i,Ĝn,η̂ is low, using the argument

controlling (C.6).

C.3.1. Intuition for Appendix D. The argument in Appendix D is our most novel theoretical con-

tribution. Note that, by (C.7), to obtain a rate of the form δ2n = n
− 2p

2p+1 (log n)γ ,74 we would require

that Subn(Ĝn) ≲ n
− 2p

2p+1 (log n)γ . However, such a rate is not immediately attainable. To see this,

note that a direct Taylor expansion in η of the log-likelihood yields

1

n

∑
i

ψi(Zi, η̂, Ĝn)−
1

n

∑
i

ψi(Zi, η0, Ĝn)

≈ 1

n

∑
i

(
∂ψi
∂ηi

)′
(ηi − η0i) +

1

2n

∑
i

(ηi − η0i)′
∂2ψi
∂η2i

(ηi − η0i). (C.9)

74We let (log n)γ denote a generic logarithmic factor, and we will not keep track of γ throughout this heuristic
discussion.
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⪅ (log n)γ

{
1

n

∑
i

∂ψi
∂ηi

O
(
n
− p

2p+1

)
+ n

− 2p
2p+1

∑
i

∥∥∥∥∂2ψi∂η2i

∥∥∥∥
}

Thus, without somehow showing that the first-order term ∂ψi
∂ηi

converges to zero, we would only be

able to obtain Subn(Ĝn) ≲ n
− p

2p+1 (log n)γ , which is insufficient.

Fortunately, it is easy to compute that the expected first derivative, evaluated at G0, is zero:

E
[
∂ψi(Z,G0, η0)

∂η

]
= 0.

As a result, we expect that if Ĝn is close to G0, then the corresponding first-order terms for Ĝn will

also be small. More precisely, it is possible to bound the first-order term in terms of the average

squared Hellinger distance, yielding∣∣∣∣∣ 1n∑
i

(
∂ψi
∂ηi

)′
(ηi − η0i)

∣∣∣∣∣ ≲ n
− p
p+1 (log n)γh(fĜn,·, fG0,·).

To summarize, through our calculation, the rate we obtain (Corollary D.1, (D.3)) for Subn(Ĝn) is

εn = (log n)γ
{
n
− p

2p+1h(fĜn,·, fG0,·) + n
− 2p

2p+1

}
.

A more detailed breakdown is presented in Appendix D.2.4.

C.3.2. Intuition for Appendix E. Since the rate for Subn(Ĝn) from Appendix D itself includes h, it

is necessary to adapt the argument in the literature on Hellinger rate control (See, e.g., Theorem

4 in Jiang, 2020).

Our argument proceeds by observing that, with high probability,

Subn(Ĝn) ≲ γ2n + h(fĜn,·, fG0,·)λn.

for some rates γn, λn. Then, we separately bound, for k = 1, . . . ,K,

P
[
Cλ1−2−k

n ≤ h(fĜn,·, fG0,·) ≤ Cλ1−2−k+1

n , Subn(Ĝn) ≲ γ2n + h(fĜn,·, fG0,·)λn

]
≤ P

[
Cλ1−2−k

n ≤ h(fĜn,·, fG0,·), Subn(Ĝn) ≲ γ2n + λ1−2−k+1

n λn

]
(C.10)

using standard arguments in the literature. This is now feasible since the event (C.10) comes with

an upper bound for h. Thus, by a union bound,

P
(
h(fĜn,·, fG0,·) > Cλn · λ−2−K

n

)
⪅
K

n
.

We can choose K →∞ appropriately slowly so as to obtain h
2
≲ δ2n with high probability.

C.3.3. Intuition for Appendix F. All that is remaining before we can use the bound (C.6) directly

is dealing with the difference between θ̂i,Ĝn,η̂ and τi,Ĝn,η0 . In Appendix F.3, we can use a Taylor

expansion to control the distance∣∣∣θ̂i,Ĝn,η̂ − θ̂i,Ĝn,η0∣∣∣ = σ2i

∣∣∣∣ f ′Ĝn,ν̂i(Ẑi)ŝifĜn,ν̂i(Ẑi)
−

f ′
Ĝn,νi

(Zi)

s0ifĜn,νi(Zi)

∣∣∣∣ = σi

∣∣∣∣∣∂ψi∂m

∣∣∣∣
Ĝn,η̂

− ∂ψi
∂m

∣∣∣∣
Ĝn,η0

∣∣∣∣∣ .
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Doing so requires bounding the second derivatives of ψi, which are posterior moments under Ĝn

(Appendix D.10), and hence bounded due to assuming that Ĝn has supported bounded within the

range of the data Ẑi (Lemma D.14). We then immediately find that∣∣∣θ̂i,Ĝn,η0 − θ∗i,G0,η0

∣∣∣
is proportional to the difference in τ -space. Therefore, the existing argument for (C.6) controls the

regret.

Appendix D. An oracle inequality for the likelihood

Recall that for some fixed ∆n,Mn, we define An =
{
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn

}
. In this section,

we bound

P
[
An,Subn(Ĝn) ≳H ϵn

]
for some rate function ϵn. It is convenient to state a set of high-level assumptions on the rates

∆n,Mn. These are satisfied for ∆n ≍ n−p/(2p+1)(log n)β,Mn ≍ (log n)1/α.

Assumption D.1. Assume that

(1) 1√
n
≲H ∆n ≲H

1
M3
n
≲H 1

(2)
√
log n ≲H Mn

Note that there exists ρn by Lemma D.9 that lower bounds the density fĜn,νi(z) for all Zi. Then

our main result is an oracle inequality.

Theorem D.1. Let ∥η̂− η∥∞ = max(∥m̂−m0∥∞, ∥ŝ− s0∥∞) and Zn = maxi∈[n] |Zi| ∨ 1. Suppose
Ĝn satisfies Assumption 1. Under Assumptions 2 to 4 and D.1, there exists constants C1,H, C2,H > 0

such that the following tail bound holds: Let

ϵn =Mn

√
log n∆n

1

n

n∑
i=1

h
(
fĜn,νi , fG0,νi

)
+∆nMn

√
log ne−C2,HM

α
n +∆2

nM
2
n log n+M2

n

∆
1− 1

2p
n√
n

.

(D.1)

Then,

P
[
Zn ≤Mn, ∥η̂ − η∥∞ ≤ ∆n,Subn(Ĝn) > C1,Hϵn

]
≤ 9

n
.

The following corollary plugs in some concrete rates for ∆n,Mn and verifies that they satisfy

Assumption D.1.

Corollary D.1. For β ≥ 0, suppose

∆n = CHn
− p

2p+1 (log n)β and Mn = (CH + 1)(C−1
2,H log n)1/α. (D.2)

Then there exists a C∗
H such that the following tail bound holds. Suppose Ĝn satisfies Assumption 1.

Under Assumptions 2 to 4, define εn as:

εn = n
− p

2p+1 (log n)
2+α
2α

+βh
(
fĜn,·, fG0,·

)
+ n

− 2p
2p+1 (log n)

2+α
α

+2β, (D.3)

we have that,

P
[
Zn ≤Mn, ∥η̂ − η∥∞ ≤ ∆n,Subn(Ĝn) > C∗

Hεn

]
≤ 9

n
.
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The constant CH in ∆n,Mn affects the conclusion of the statement only through affecting the

constant C∗
H.

D.1. Proof of Corollary D.1. We first show that the specification of ∆n and Mn means that the

requirements of Assumption D.1 are satisfied. Among the requirements of Assumption D.1:

(1) is satisfied since the polynomial part of ∆n converges to zero slower than n−1/2, but con-

verges to zero faster than any logarithmic rate. Mn is a logarithmic rate.

(2) is satisfied since α ≤ 2.

We also observe that by Jensen’s inequality,

1

n

∑
i

h(fĜn,νi , fG0,νi) ≤ h(fĜn,·, fG0,·),

and so we can replace the corresponding factor in ϵn by h. Now, we plug the rates ∆n,Mn into ϵn.

We find that the term

∆nM
2
ne

−C2,HM
α
n = ∆nM

2
ne

−(CH+1)α(logn) ≤ ∆nM
2
nn

−1 ≤ 1

n
∆nM

2
n ≲H ∆2

nM
2
n log n

since log n > 1 as n >
√
2πe by Assumption 1. Plugging in the rates for the other terms, we find

that

ϵn ≲H εn.

Therefore, Corollary D.1 follows from Theorem D.1.

D.2. Proof of Theorem D.1.

D.2.1. Decomposition of Subn(Ĝn). Observe that, by definition of Ĝn in (3.2),

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn)−
1

n

n∑
i=1

ψi(Zi, η̂, G0) ≥ κn

For random variables an, bn such that almost surely∣∣∣∣ 1n
n∑
i=1

ψi(Zi, η̂, Ĝn)− ψi(Zi, η0, Ĝn)
∣∣∣∣ ≤ an∣∣∣∣ 1n

n∑
i=1

ψi(Zi, η̂, G0)− ψi(Zi, η0, G0)

∣∣∣∣ ≤ bn
we have

1

n

n∑
i=1

ψi(Zi, η0, Ĝn)−
1

n

n∑
i=1

ψi(Zi, η0, G0) ≥ −an − bn − κn

and

Subn(Ĝn) ≤ an + bn + κn.

Therefore, it suffices to show large deviation results for an and bn.

D.2.2. Taylor expansion of ψi(Zi, η̂, Ĝn) − ψi(Zi, η0, Ĝn). Define ∆mi = m̂i −m0i, ∆si = ŝi − s0i,
and ∆i = [∆mi,∆si]

′. Recall ∥η̂−η∥∞ = max(∥s−s0∥∞, ∥m−m0∥∞) as in (C.5). Since ψi(Zi, η,G)
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is smooth in (mi, si) ∈ R× R>0, we can take a second-order Taylor expansion:

ψi

(
Zi, η̂, Ĝn

)
− ψi

(
Zi, η0, Ĝn

)
=
∂ψi
∂mi

∣∣∣∣
η0,Ĝn

∆mi +
∂ψi
∂si

∣∣∣∣
η0,Ĝn

∆si +
1

2
∆′
iHi(η̃i, Ĝn)∆i︸ ︷︷ ︸

R1i

(D.4)

where Hi(η̃i, Ĝn) is the Hessian matrix ∂2ψi
∂ηi∂η′i

evaluated at some intermediate value η̃i lying on the

line segment between η̂i and η0i.

We further decompose the first-order terms into an empirical process term and a mean-component

term. By Lemma D.9, (D.26), and (D.28), for

ρn =
1

n3
e−CHM

2
n∆n ∧ 1

e
√
2π
, (D.5)

we have that the numerators to the first derivatives can be truncated at ρn, as the truncation does

not bind:

∂ψi
∂mi

∣∣∣∣
η0,Ĝn

= − 1

si

f ′
i,Ĝn

fi,Ĝn ∨
ρn
νi

≡ Dm,i(Zi, Ĝn, η0, ρn)

∂ψi
∂si

∣∣∣∣
η0,Ĝn

=
si
σ2i

Qi(Zi, η0, Ĝn)

fi,Ĝn ∨
ρn
νi

≡ Ds,i(Zi, Ĝn, η0, ρn).

Let

Dk,i(Ĝn, η0, ρn) =

∫
Dk,i(z, Ĝn, η0, ρn) fG0,νi(z)dz for k ∈ {m, s}

be the mean of Dk,i. Then, for k ∈ {m, s},

∂ψi
∂ki

∣∣∣∣
η0,Ĝn

∆ki =
[
Dk,i(Zi, Ĝn, η0, ρn)−Dk,i(Ĝn, η0, ρn)

]
∆ki +Dk,i(Ĝn, η0, ρn)∆ki

Hence, we can decompose the first-order terms in an as

1

n

n∑
i=1

∂ψi
∂ki

∣∣∣∣
η0,Ĝn

∆ki =
1

n

n∑
i=1

Dk,i(Ĝn, η0, ρn)∆ki +
1

n

n∑
i=1

[
Dk,i(Zi, Ĝn, η0, ρn)−Dk,i(Ĝn, η0, ρn)

]
∆ki

≡ U1k + U2k

Let the second order term be R1 =
1
n

∑
iR1i. We let an = |R1|+

∑
k∈{m,s} |U1k|+ |U2k|

D.2.3. Taylor expansion of ψi(Zi, η̂, G0)− ψi(Zi, η0, G0). Like (D.4), we similarly decompose

ψi(Zi, η̂, G0)− ψi(Zi, η0, G0) =
∂ψi
∂mi

∣∣∣∣
η0,G0

∆mi +
∂ψi
∂si

∣∣∣∣
η0,G0

∆si +
1

2
∆′
iHi(η̃i, G0)∆i︸ ︷︷ ︸

R2i

(D.6)

=
∑

k∈{m,s}

Dk,i(Zi, G0, η0, 0)∆ki +R2i

≡ U3mi + U3si +R2i. (D.7)

Let U3k =
1
n

∑
i U3ki for k ∈ {m, s} and let R2 =

1
n

∑
iR2i. We let bn = |R2|+

∑
k∈{m,s} |U3k|+|U3k|
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D.2.4. Bounding each term individually. By our decomposition, we can write

an + bn + κn ≤ κn + |R1|+ |R2|+
∑

k∈{m,s}

|U1k|+ |U2k|+ |U3k|

The ensuing subsections bound each term individually. Here we give an overview of the main ideas:

(1) We bound 1(An)|U1m| in almost sure terms in Lemma D.1 by observing that |Dmi| is small

when Ĝn is close to G0, since Dmi(G0, η0, 0) = 0. To do so, we need to control the differences

Dmi(Ĝn, η0, ρn)−Dmi(G0, η0, ρn)

and

Dmi(G0, η0, ρn)−Dmi(G0, η0, 0)︸ ︷︷ ︸
=0

= Dmi(G0, η0, ρn).

Controlling the first difference features the Hellinger distance, while controlling the second relies

on the fact that PX∼f(X)(f(X) ≤ ρ) cannot be too large, by a Chebyshev’s inequality argument in

Lemma D.12. Similarly, we bound 1(An)|U1s| in Lemma D.2.

(2) The empirical process terms U2m, U2s are bounded probabilistically in Lemmas D.3 and D.4

with statements of the form

P(An, |U2k| > c1) ≤ c2.

To do so, we upper bound 1(An)U2k ≤ U2k in almost sure terms. The upper bound is obtained by

projecting Ĝn onto a ω-net of P(R) in terms of some pseudo-metric dk,∞,Mn induced by Dk,i. The

upper bound U2k then takes the form

ω∆n + max
j∈[N ]

sup
η∈S

∣∣∣∣ 1n∑
i

(Dki −Dki)(ηi − η0i)
∣∣∣∣ N ≤ N(ω,P(R), dk,∞,Mn).

Large deviation of U2k is further controlled by applying Dudley’s chaining argument (Vershynin,

2018), since the entropy integral over Hölder spaces is well-behaved. The covering number N

is controlled via Proposition D.1 and Proposition D.2, which are minor extensions to Lemma 4

and Theorem 7 in Jiang (2020). The covering number is of a manageable size since the induced

distributions fG,νi are very smooth.

(3) Since Dk,i(G0, η0, 0) = 0. U3m, U3s are effectively also empirical process terms, without the

additional randomness in Ĝn. Thus the ω-net argument above is unnecessary for U3m, U3s, whereas

the bounding follows from the same Dudley’s chaining argument. Lemma D.6 bounds U3k.

(4) For the second derivative terms R1, R2, we observe that the second derivatives take the

form of functions of posterior moments. The posterior moments under prior Ĝn is bounded within

constant factors ofM q
n since the support of Gn is restricted. The posterior moments under prior G0

is bounded by |Zi|q ≲H M q
n as we show in Lemma D.18, thanks to the simultaneous moment control

for G0. Hence 1(An)R1 can be bounded in almost sure terms. We bound 1(An)R2 probabilistically.

The second derivatives are bounded in Lemmas D.5 and D.7.

(1) and (4) above bounds U1k, R1, R2 almost surely under An. (2) and (3) bounds U2k, U3k

probabilistically. By a union bound in Lemma D.17, we can simply add the rates. Doing so, we

find that the first term in ϵn (D.1) comes from U1s, which dominates U1m. The second term comes
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from U2s, which dominates U2m. The third term comes from R1, which dominates R2. The fourth

term comes from U3s. The leading terms in ϵn dominate κn, recalling (3.3). This completes the

proof.

Before we proceed to the individual lemmas, we highlight a few convenient facts:

• The support of Ĝn is within [−Mn,Mn], where Mn = maxi |Ẑi(η̂)| ∨ 1. Under Assump-

tion D.1, 1(An)Mn ≲H Mn by Lemma D.11(3).

• As a result, moments of Ĝn and fĜn,νi is bounded by appropriate moments of Mn, up to

constants, under An.

D.3. Bounding U1m.

Lemma D.1. Under Assumptions 1 to 4, assume additionally that ∥η̂ − η∥∞ ≤ ∆n, Zn ≤ Mn.

Assume that the rates satisfy Assumption D.1. Then

|U1m| ≡

∣∣∣∣∣ 1n
n∑
i=1

Dmi(Ĝn, η0, ρn)∆mi

∣∣∣∣∣ ≲H ∆n

[
log n

n

n∑
i=1

h(fG0,νi , fĜn,νI ) +
M

1/3
n

n

]
. (D.8)

Proof. Note that

|Dm,i(Ĝn, η0, ρn)| ≲s0ℓ

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fG0,νi(z)dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

[fG0,νi(z)− fĜn,νi(z) + fĜn,νi(z)]dz

∣∣∣∣∣
≤

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

[fG0,νi(z)− fĜn,νi(z)] dz

∣∣∣∣∣ (D.9)

+

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fĜn,νi(z)dz

∣∣∣∣∣ (D.10)

By the bounds for (D.9) and (D.10) below, we have that

|U1m| ≲H ∆n

{√
log n

n

n∑
i=1

h(fG0,νi , fĜn,ν̂i) +
M

1/3
n

n

}
by Assumption D.1. □

D.3.1. Bounding (D.9). Consider the first term (D.9):∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

(
fG0,νi(z)− fĜn,νi(z)

)
dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

(√
fG0,νi(z)−

√
fĜn,νi(z)

)(√
fG0,νi(z) +

√
fĜn,νi(z)

)
dz

∣∣∣∣∣
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≤


∫ (√

fG0,νi(z)−
√
fĜn,νi(z)

)2

dz︸ ︷︷ ︸
2h2

·
∫ ( f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

)2(√
fG0,νi(z) +

√
fĜn,νi(z)

)2

dz


1/2

(Cauchy–Schwarz)

≲ h(fG0,νi , fĜn,νi)


∫ ( f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

)2

(fG0,νi(z) + fĜn,νi(z)) dz


1/2

(D.11)

By Lemmas D.9 and D.10,(
f ′
Ĝn,νi

(z)

fĜn,νi(z) ∨
ρn
νi

)2

≲
1

νi
log(1/ρn) ≲H log n.

Hence,

(D.9) ≲H h(fG0,νi , fĜn,νi)
√
log n

D.3.2. Bounding (D.10). The second term (D.10) is∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fĜn,νi(z) dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z)

(
fĜn,νi(z)

fĜn,νi(z) ∨
ρn
νi

− 1

)
fĜn,νi(z) dz

∣∣∣∣∣
≤
∫ ∣∣∣∣∣f

′
Ĝn,νi

(z)

fĜn,νi(z)

∣∣∣∣∣1(fĜn,νi(z) ≤ ρn/νi) fĜn,νi(z) dz
≤

(
EZ∼fĜn,νi

[(
EĜn,νi

[
(τ − Z)
ν2i

| Z
])2

])1/2

︸ ︷︷ ︸
≤Eτ∼Ĝn,Z∼N (τ,νi)

[(τ−Z)2/ν4i ]1/2=ν
−1
i

·
√

PfĜn,νi
[fĜn,νi(Z) ≤ ρn/νi].

(Cauchy–Schwarz and (D.33))

By Jensen’s inequality and law of iterated expectations, the first term is bounded by 1
νi
. By

Lemma D.12, the second term is bounded by ρ
1/3
n VarZ∼fĜn,νi

(Z)1/6. Now,

VarZ∼fĜn,νi
(Z) ≤ ν2i + µ22(Ĝn) ≲H M2

n.

Hence, ∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fĜn,νi(z) dz

∣∣∣∣∣ ≲H M1/3
n ρ1/3n ≲H M1/3

n n−1. (Lemma D.9)

D.4. Bounding U1s.

Lemma D.2. Under Assumptions 1 to 4 and D.1, if ∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, then

|U1s| ≲H ∆n

[
Mn
√
log n

n

n∑
i=1

h(fĜn,νi , fG0,νi) +
M4/3

n

]
. (D.12)
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Proof. Similar to our computation with Dm,i, we decompose

|Ds,i(Ĝn, η0, ρn)| ≲σℓ,σu,s0ℓ,s0u

∣∣∣∣∫ Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)
(fG0,νi(z)− fĜn,νi(z)) dz

∣∣∣∣ (D.13)

+

∣∣∣∣∫ Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)
fĜn,νi(z) dz

∣∣∣∣. (D.14)

We conclude the proof by plugging in our subsequent calculations. □

D.4.1. Bounding (D.13). The first term (D.13) is bounded by(∫
Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)

[
fG0,νi(z)− fĜn,νi(z)

]
dz

)2

≲ h2(fG0,νi , fĜn,νi)

∫ (
Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)

)2 [
fG0,νi(z) + fĜn,νi(z)

]
dz,

similar to the computation in (D.11).

By Lemmas D.9 and D.13,(
Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)

)2

≲σℓ,σu,s0ℓ,s0u (
√
log nMn + log n)2 ≲H M2

n log n

Hence ∫ (
Q(z, νi)

fĜn,ν̂i(z) ∨ (ρn/νi)

)2 [
fG0,νi(z) + fĜn,νi(z)

]
dz ≲H M2

n log n.

Hence

(D.13) ≲σℓ,σu,s0ℓ,s0u Mn

√
log nh(fG0,νi , fĜn,νi). (D.15)

D.4.2. Bounding (D.14). Observe that

(D.14) =

∣∣∣∣∣
∫
Qi(z, η0, Ĝn)

fĜn,νi(z)

(
fĜn,νi(z)

fĜn,νi(z) ∨ (ρn/νi)
− 1

)
fĜn,νi(z) dz

∣∣∣∣∣
Similar to our argument for (D.10), by Cauchy–Schwarz,

(D.14) ≤
(
EfĜn,νi (z)

[
(EĜn,νi [(Z − τ)τ | Z])

2
])1/2√

PfĜn,νi (z)
(fĜn,νi(z) ≤ ρn/νi)

≲H Mn · ρ1/3n M1/3
n ≲H

M
4/3
n

n
.

D.5. Bounding U2m.

Lemma D.3. Under Assumptions 1 to 4 and D.1,

P

[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U2m| ≳H

√
log n∆n

{
e−CHM

α
n +

log n√
n

+
1

(n∆
1/p
n )1/2

}]
≤ 2

n
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Proof. We prove this claim by first showing that if ∥η̂ − η∥∞ ≤ ∆n and Zn ≤ Mn, we can upper

bound |U2m| by some stochastic quantity U2m. Now, observe that

P
[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U2m| > t

]
≤ P

[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, U2m > t

]
≤ P[U2m > t].

Hence, a stochastic upper bound on U2m would verify the claim.

We now construct U2m assuming ∥η̂ − η∥∞ ≤ ∆n and Zn ≤Mn. Let

Dm,i,Mn(Zi, Ĝn, η̂, ρn) = Dm,i(Zi, Ĝn, η̂, ρn)1(|Zi| ≤Mn)

and let

Dm,i,Mn(Ĝn, η̂, ρn) =

∫
Dm,i(z, Ĝn, η̂, ρn)1(|z| ≤Mn)fG0,νi(z) dz.

On the event Zn ≤Mn, Dm,i,Mn = Dm,i. We recall that

|U2m| =
∣∣∣∣ 1n

n∑
i=1

(Dm,i −Dm,i)∆mi

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

(Dm,i,Mn −Dm,i,Mn)∆mi

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

(Dm,i −Dm,i,Mn)∆mi

∣∣∣∣.
Note that

|Dm,i −Dm,i,Mn | ≲σℓ,σu,s0ℓ,s0u

∣∣∣∣∫
|z|>Mn

f ′
Ĝn,νi

(z)

fĜn,νi(z) ∨ (ρn/νi)︸ ︷︷ ︸
≲H

√
logn, Lemmas D.9 and D.10

fG0,νi(z) dz

∣∣∣∣
≲H

√
log nPG0,νi(|Zi| > Mn)

By Lemma D.16, PG0,νi(|Zi| > Mn) ≤ exp (−Cα,A0,νuM
α
n ) . Hence, the second term | 1n

∑n
i=1(Dm,i−

Dm,i,Mn)∆mi| is bounded above by e−CHM
α
n
√
log n∆n, up to constants.

Note that under our assumptions, maxi |Ẑi|∨1 ≤ CHMn. Let L = [−CHMn, CHMn] ≡ [−M,M ].

Define

S =
{
(m, s) : ∥m−m0∥ ≤ ∆n, ∥s− s0∥ ≤ ∆n, (m, s) ∈ CpA1

([σℓ, σu])
}
. (D.16)

For two distributions G1, G2, define the following pseudo-metric

dm,∞,Mn(G1, G2) = max
i∈[n]

sup
|z|≤Mn

|Dm,i(z,G1, η0, ρn)−Dm,i(z,G2, η0, ρn)| (D.17)

Let G1, . . . , GN be an ω-net of P(L) in terms of dm,∞,Mn(G1, G2), where N is taken to be the

covering number

N = N (ω,P(L), dm,∞,Mn(·, ·)) .

Let Gj∗ be a Gj where dm,∞,Mn(Ĝn, Gj∗) ≤ ω.
By construction, |Dm,i,Mn(Ĝn, η̂, ρn) − Dm,i,Mn(Gj∗ , η̂, ρn)| ≤ ω as well, since the integrand is

bounded uniformly. Hence, by projecting Ĝn to Gj∗ , we obtain∣∣∣∣ 1n
n∑
i=1

(Dm,i,Mn(Zi, Ĝn, η0, ρn)−Dm,i,Mn(Ĝn, η0, ρn))(m̂(σi)−m0(σi))

∣∣∣∣
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≤ 2ω∆n + max
j∈[N ]

∣∣∣∣ 1n
n∑
i=1

(Dm,i,Mn(Zi, Gj , η0, ρn)−Dm,i,Mn(Gj , η0, ρn))(m̂(σi)−m0(σi))

∣∣∣∣ (D.18)

Next, consider the process

η 7→ 1

n

n∑
i=1

(Dm,i,Mn(Zi, Gj , η0, ρn)−Dm,i,Mn(Gj , η0, ρn))(m(σi)−m0(σi))

≡ 1

n

n∑
i=1

vi,j(η) ≡ Vn,j(η)

so that, when ∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn,

(D.18) ≲ ω∆n + max
j∈[N ]

sup
η∈S
|Vn,j(η)|.

Thus, we can take

U2m = CH

{
e−CHM

α
n
√
log n∆n + ω∆n + max

j∈[N ]
sup
η∈S
|Vn,j(η)|

}
where we shall prove a stochastic upper bound and optimize ω shortly.

By the results in Appendix D.5.1 via Dudley’s chaining argument, with probability at least

1− 2/n,

max
j∈[N ]

sup
η∈S
|Vn,j(η)| ≲H

∆n
√
log n√
n

[
∆−1/(2p)
n +

√
logN +

√
log n

]
By Appendix D.5.2, we can pick ω such that

ω∆n + max
j∈[N ]

sup
η∈S

Vnj(η) ≲H ∆n

√
log n

 log n√
n

+
1√
n∆

1/p
n

 (D.19)

with probability at least 1− 2/n. Putting these observations together, we have that

P

[
U2m ≳H

√
log n∆n

{
e−CHM

α
n +

log n√
n

+
1

(n∆
1/p
n )1/2

}]
≤ 2

n
.

This concludes the proof. □

D.5.1. Bounding maxj∈[N ] supη∈S |Vn,j(η)|. Note that Evij(η) = 0. Moreover, by Lemmas D.9

and D.10,

max
(
Dm,i,Mn(Zi, Gj , η0, ρn), Dm,i,Mn(Gj , η0, ρn)

)
≲H

√
log(1/ρn) ≲H

√
log n

Recall that ∥η1 − η2∥∞ = max (∥m1 −m2∥∞, ∥s1 − s2∥∞) . Then,

|vij(η1)− vij(η2)| ≲H
√

log n∥η1 − η2∥∞

As a result,75

∥Vn,j(η1)− Vn,j(η2)∥ψ2 ≲H

√
log n√
n
∥η1 − η2∥∞.

75See Definition 2.5.6 in Vershynin (2018) for a definition of the ψ2-norm (subgaussian norm).
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Hence Vn,j(η) is a mean-zero process with subgaussian increments76 with respect to ∥η1 − η2∥∞.

Note that the diameter of S under ∥η1−η2∥∞ is at most 2∆n. Hence, by an application of Dudley’s

tail bound (Theorem 8.1.6 in Vershynin (2018)), for all u > 0,

P

[
sup
η∈S
|Vn,j(η)| ≳H

√
log n√
n

{∫ 2∆n

0

√
logN(ϵ, S, ∥·∥∞) dϵ+ u∆n

}]
≤ 2e−u

2
.

Note that√
logN(ϵ, S, ∥·∥∞) ≤

√
2 logN(ϵ, CpA1

([−σℓ, σu]), ∥·∥∞) ≤
√
2 logN(ϵ/A1, C

p
1 ([−σℓ, σu]), ∥·∥∞)

By Theorem 2.7.1 in van der Vaart and Wellner (1996),

logN(ϵ/A1, C
p
1 ([−σℓ, σu]), ∥·∥∞) ≲p,σℓ,σu

(
A1

ϵ

)1/p

≲H

(
1

ϵ

)1/p

.

Hence, plugging in these calculations, we obtain

P

[
sup
η∈S
|Vn,j(η)| ≳H

√
log n√
n

{
∆

1− 1
2p

n + u∆n

}]
≤ 2e−u

2
.

This implies that

sup
η∈S
|Vn,j(η)| ≲H

√
log n√
n

∆
1− 1

2p
n + Ṽn,j ,

for some random variable Ṽn,j ≥ 0 and ∥Ṽn,j∥ψ2 ≲H
∆n√
n

√
log n.77 Thus,

(D.18) ≲H ∆n

ω +

√
log n√
n∆

1/p
n

+ max
j∈[N ]

Ṽn,j .

Finally, note that by Lemma D.15 with the choice t =
√
log n,

P

[
max
j∈[N ]

Ṽn,j ≳H
∆n√
n

√
log n

[√
logN +

√
log n

]]
≤ 2

n
.

D.5.2. Selecting ω. The rate function that involves ω and logN is of the form

ω +

√
logN

n

√
log n

Reparametrizing ω = δ log(1/δ)

√
log(1/ρn)

ρn
, by Proposition D.2, shows that

logN ≤ logN

(
δ log(1/δ)

√
log(1/ρn)

ρn
,P(R), dm,∞,M

)
≲H log(1/δ)2max

(
1,

Mn√
log(1/δ)

)
76See Definition 8.1.1 in Vershynin (2018).
77We can take

Ṽn,j =

{
sup
η∈S
|Vn,j(η)| − CH

Mn√
n
∆

1− 1
2p

n

}
+

.

The tail bound P(Ṽn,j ≳H u∆n√
n
Mn) ≤ 2e−u2

implies the ψ2-norm bound by expression (2.14) in Vershynin

(2018).
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Consider picking δ = ρn
1√
n
≤ 1/e so that log(1/δ) = log(1/ρn)+

1
2 log n ≲H log n. Since log(1/ρn) ≳

M2
n, we conclude that max

(
1, Mn√

log(1/δ)

)
≲H 1. Hence,

logN ≲H log2 n.

Note too that ω ≲H
(logn)3/2√

n
. Thus, under Assumption D.1,

ω +
√
logN

1√
n

√
log n ≲H

(log n)3/2√
n

.

D.6. Bounding U2s.

Lemma D.4. Under Assumptions 1 to 4 and D.1,

P

∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U2s| ≳H ∆nMn

√
log n

e−CHM
α
n +

log n√
n

+
1√
n∆

1/p
n


 ≤ 2

n

Proof. This proof operates much like the proof of Lemma D.3. We observe that we can come up

with an upper bound U2s of U2s under the event ∥η̂−η∥∞ ≤ ∆n and Zn ≤Mn. A stochastic upper

bound on U2s then implies the lemma.

Let us first assume ∥η̂ − η∥∞ ≤ ∆n and Zn ≤ Mn . Define Ds,i,Mn and Ds,i,Mn analogously to

Dm,i,Mn and Dm,i,Mn . A similar decomposition shows

|U2s| ≤
∣∣∣∣ 1n

n∑
i=1

(Ds,i,Mn −Ds,i,Mn)∆si

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

(Ds,i −Ds,i,Mn)∆si

∣∣∣∣
Lemma D.13 is a uniform bound on the integrand in the second term. Hence, the second term

is bounded by∣∣∣∣ 1n
n∑
i=1

(Ds,i −Ds,i,Mn)∆si

∣∣∣∣
≲H ∆n

√
log(1/ρn)

1

n

n∑
i=1

(∫
|Zi|>Mn

|z|fG0,νi(z) dz +
√

log(1/ρn)

∫
|Zi|>Mn

fG0,νi(z) dz

)

≲H ∆n

√
log n

{
e−

CH
2
Mα
n max
i∈[n]

µ2(fG0,νi) +
√
log ne−CHM

α
n

}
(Cauchy–Schwarz for the first term and apply Lemmas D.9 and D.16)

≲H ∆n(log n)e
−CHM

α
n .

Note that under our assumptions, maxi |Ẑi|∨1 ≤ CHMn. Let L = [−CHMn, CHMn] ≡ [−M,M ].

Define S =
{
(m, s) : ∥m−m0∥ ≤ ∆n, ∥s− s0∥ ≤ ∆n, (m, s) ∈ CpA1

([σℓ, σu])
}
. For two distribu-

tions G1, G2, define the following pseudo-metric

ds,∞,Mn(G1, G2) = max
i∈[n]

sup
|z|≤Mn

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)| (D.20)

Let G1, . . . , GN be an ω-net of P(L) in terms of ds,∞,Mn(G1, G2), where

N = N (ω,P(L), ds,∞,Mn(·, ·)) .
88



LetGj∗ be aGj where ds,∞,Mn(Ĝn, Gj∗) ≤ ω. By construction, |Ds,i,Mn(Ĝn, η0, ρn)−Ds,i,Mn(Gj∗ , η0, ρn)| ≤
ω as well, since the integrand is bounded uniformly.

Hence∣∣∣∣ 1n
n∑
i=1

(Ds,i,Mn(Zi, Ĝn, η0, ρn)−Ds,i,Mn(Ĝn, η0, ρn))(ŝ(σi)− s0(σi))
∣∣∣∣

≤ 2ω∆n + max
j∈[N ]

∣∣∣∣ 1n
n∑
i=1

(Ds,i,Mn(Zi, Gj , η0, ρn)−Ds,i,Mn(Gj , η0, ρn))(ŝ(σi)− s0(σi))
∣∣∣∣ (D.21)

Next, consider the process

η 7→ 1

n

n∑
i=1

(Ds,i,Mn(Zi, Gj , η0, 0)−Ds,i,Mn(Gj , η0, 0))(s(σi)− s0(σi)) ≡
1

n

n∑
i=1

vi,j(η) ≡ Vn,j(η)

so that (D.21) ≲ ω∆n+maxj∈[N ] supη∈S |Vn,j(η)|. This again upper bounds |Uis| with some U is that

does not depend on the event ∥η̂ − η∥∞ ≤ ∆n, Zn ≤ Mn, on the event ∥η̂ − η∥∞ ≤ ∆n, Zn ≤ Mn.

Hence, we can choose

U2s = CH

{
ω∆n + max

j∈[N ]
sup
η∈S
|Vn,j(η)|+∆n(log n)e

−CHM
α
n

}
.

It remains to show a tail bound with an appropriate choice of ω for U2s.

By Lemma D.13, the process Vn,j has the subgaussian increment property

|Vn,j(η1)− Vn,j(η2)| ≲H
Mn
√
log n√
n

∥η1 − η2∥∞

as in Appendix D.5.1, with a different constant for the subgaussianity. Hence, by the same argument

as in Appendix D.5.1, with probability at least 1− 2/n,

max
j∈[N ]

sup
η∈S
|Vn,j(η)| ≲H

∆nMn
√
log n√

n

[
∆−1/(2p)
n +

√
logN +

√
log n

]
We turn to selecting ω. The relevant term for selecting ω is ω+ Mn

√
logn√
n

√
logN . Reparametrize

ω = Mn

√
log(1/ρn)δ log(1/δ)/ρn. Pick δ = ρn/

√
n < 1/e. The same argument as in Appen-

dix D.5.2 with Proposition D.2 shows that

ω +
Mn
√
log n√
n

√
logN ≲H

Mn(log n)
3/2

√
n

.

Therefore, we can select ω such that, overall, with probability at least 1− 2/n, under Assump-

tion D.1,

U2s ≲H ∆n

Mn

√
log n exp (−Cα,A0,νuM

α
n ) +

Mn(log n)
3/2

√
n

+Mn

√
log n

1√
n∆

1/p
n

+

√
log n√
n

Mn

√
log n


≲H ∆nMn

√
log n

e−CHM
α
n +

log n√
n

+
1√
n∆

1/p
n

 .
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This concludes the proof. □

D.7. Bounding R1.

Lemma D.5. Recall R1i from (D.4). Then, under Assumptions 1 to 4 and D.1, if ∥η̂− η∥∞ ≤ ∆n

and Zn ≤Mn, then R1i ≲H ∆2
nM

2
n log n.

Proof. Observe that R1i ≲σℓ,σu,s0ℓ,s0u max
(
∆2
mi,∆

2
si

)
· ∥Hi(η̃i, Ĝn)∥∞, where ∥·∥∞ takes the largest

element from a matrix by magnitude. By assumption, the first term is bounded by ∆2
n. By

Lemma D.14, the second derivatives are bounded by M2
n log n. Hence ∥Hi(η̃i, Ĝn)∥∞ ≲H M2

n log n.

This concludes the proof. □

D.8. Bounding U3m, U3s.

Lemma D.6. Under Assumptions 2 to 4 and D.1,

P

[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U3m| ≳H ∆n

{
e−CHM

α
n +

Mn√
n

(
∆−1/(2p)
n + log n

)}]
≤ 2

n

P

[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U3s| ≳H ∆n

{
e−CHM

α
n +

M2
n√
n

(
∆−1/(2p)
n + log n

)}]
≤ 2

n
.

Proof. The proof structure follows that of Lemmas D.3 and D.4.

Recall that

U3m =
1

n

n∑
i=1

Dm,i(Zi, G0, η0, 0)(m̂i −m0).

=
1

n

n∑
i=1

(Dm,i,Mn −Dm,i,Mn)(m̂i −m0) +Dm,i,Mn(m̂i −m0)

Note that

|Dm,i,Mn | =
∣∣∣∣∫

|z|≤Mn

f ′G0,νi
(z)

fG0,νi(z)
fG0,νi(z) dz

∣∣∣∣
=

∣∣∣∣∫ 1 (|z| > Mn) ·
f ′G0,νi

(z)

fG0,νi(z)
fG0,νi(z) dz

∣∣∣∣
≲σℓ,σu,s0ℓ,s0u P(|z| > Mn)

1/2

(Cauchy–Schwarz, Jensen, and law of iterated expectations via (D.33))

≲H e−CHM
α
n . (D.22)

Recall S in (D.16). Define the process Vn(η) =
1
n

∑
i vn,i(η) ≡

1
n

∑n
i=1(Dm,i,Mn −Dm,i,Mn)(m̂i−

m0). Therefore, if ∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn,

|U3m| ≲H ∆ne
−CHM

α
n + sup

η∈S
|Vn(η)| ≡ U3m.

Therefore, to bound U3m it suffices to show a tail bound for supη∈S |Vn(η)|. Observe that

Vn(η1)− Vn(η2) =
1

n

∑
i

(Dm,i,Mn −Dm,i,Mn)(η1i − η2i)
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Now, by Lemma 2.6.8 in Vershynin (2018), since |Dm,i,Mn | ≲H Mn by Lemma D.18,

∥vni(η1)− vni(η2)∥ψ2 ≲ ∥Dm,i,Mn(η1i − η2i)∥ψ2 ≲H Mn∥η1 − η2∥∞.

Since vni(η1)− vni(η2) is mean zero, we have that

∥Vn(η1)− Vn(η2)∥ψ2 ≲H
Mn√
n
∥η1 − η2∥∞ (D.23)

Hence, by the same Dudley’s chaining calculation in Appendix D.5.1, with probability at least

1− 2/n,

U3m ≲H ∆n

{
e−CHM

α
n +

Mn√
n

(
∆−1/(2p)
n + log n

)}
.

This concludes the proof for U3m.

The proof for U3s is similar. We need to establish the analogue of (D.22) and (D.23). For the

tail bound (analogue of (D.22)), we have the same bound

|Ds,i,Mn | ≲ P (|z| > Mn)
1/2
(
EfG0,νi

(z)

[
(EG0,νi [(Z − τ)τ | Z])2

])1/2
≲H e−CHM

α
n .

For the analogue of (D.23), since Lemma D.18 implies that |Ds,i,Mn | ≲H Z2
i 1(Zi ≤Mn) ≤M2

n,

∥Vn(η1)− Vn(η2)∥ψ2 ≲H
M2
n√
n
∥η1 − η2∥∞.

Hence, with probability at most 2/n

U3s ≳H ∆n

{
e−CHM

α
n +

M2
n√
n
(∆−1/(2p)

n + log n)

}
.

□

D.9. Bounding R2.

Lemma D.7. Under Assumptions 2 to 4 and D.1, then P
(
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |R2| ≳H ∆2

n

)
≤

1
n .

Proof. Recall that 1(An) = 1(∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn). Note that

1(An)|R2| ≲H ∆2
n

1

n

n∑
i=1

1(An)∥Hi∥∞.

by (1,∞)-Hölder inequality. Moreover, note that the second derivatives that occur in entries of

Hi are functions of posterior moments. By Lemma D.18, under G0, these posterior moments are

bounded by above by corresponding moments of Ẑi(η̃i). By Lemma D.18, under G0, these posterior

moments are bounded by above by corresponding moments of Ẑi(η̃i). Hence,

1(An)∥Hi∥∞ ≲H 1(An)
(
Ẑi(η̃i) ∨ 1

)4
≲H (Zi ∨ 1)4. (D.24)

Hence,

1(An)|R2| ≲H ∆2
n

1

n

n∑
i=1

(Zi ∨ 1)4.
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By Chebyshev’s inequality,

P

(
1

n

n∑
i=1

(Zi ∨ 1)4 > E[(Zi ∨ 1)4] + t

)
≤ 1

t2
Var

(
1

n

n∑
i=1

(Zi ∨ 1)4

)
=

Var(Z4
i ∨ 1)

nt2
.

Picking t2 = Var(Z4
i ∨ 1) yields that

P

(
1

n

n∑
i=1

(Zi ∨ 1)4 ≳H 1

)
≤ 1

n
.

Hence,

P
(
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |R2| ≳H ∆2

n

)
≤ 1

n
.

□

D.10. Derivative computations. It is sometimes useful to relate the derivatives of ψi to EG,η.

We compute the following derivatives. Since they are all evaluated at G, η, we let ν̂ = ν̂i(η) and

ẑ = Ẑi(η) as a shorthand.

∂ψi
∂mi

∣∣∣∣
η,G

= − 1

si

f ′G,ν̂(ẑ)

fG,ν̂(ẑ)
(D.25)

=
si
σ2i

EG,ν̂ [Z − τ | ẑ] (D.26)

∂ψi
∂si

∣∣∣∣
η,G

=
1

σiν̂i(η)fG,ν̂(η)(Ẑi(η))

∫
(Ẑi(η)− τ)τφ

(
Ẑi(η)− τ
ν̂i(η)

)
1

ν̂i(η)
G(dτ)︸ ︷︷ ︸

Qi(Zi,η,G)

(D.27)

=
1

σiν̂
EG,ν̂ [(Z − τ)τ | ẑ] (D.28)

∂2ψi
∂m2

i

∣∣∣∣
η,G

=
1

s2i

f ′′G,ν̂(ẑ)
fG,ν̂(ẑ)

−

(
f ′G,ν̂(ẑ)

fG,ν̂(ẑ)

)2
 (D.29)

=
1

s2i

[
1

ν̂4
EG,ν̂ [(τ − Z)2 | ẑ]−

1

ν̂2
− 1

ν̂4
(EG,ν̂ [(τ − Z) | ẑ])2

]
(D.30)

∂2ψi
∂mi∂si

∣∣∣∣
η,G

=

(
1

σ2i
EG,ν̂ [(Z − τ)τ | ẑ]−

1

s2i

)
1

ν̂2
EG,ν̂ [(τ − Z) | ẑ] +

EG,ν̂ [(τ − Z)2τ | ẑ]
ν̂σisi

(D.31)

∂2ψ

∂s2

∣∣∣∣
η,G

=
1

σ2i

{
EG,ν̂

[(
s2i
σi

(Z − τ)2 − 1

)
τ2 | ẑ

]
− 1

ν̂2
(EG,ν̂ [(Z − τ)τ | ẑ])2

}
(D.32)

It is useful to note that

f ′G,ν(z)

fG,ν(z)
=

1

ν2
EG,ν [(τ − Z) | z] (D.33)

f ′′G,ν(z)

fG,ν(z)
=

1

ν4
EG,ν [(τ − Z)2 | z]−

1

ν2
(D.34)

D.11. Metric entropy of P(R) under moment-based distance. The following is a minor

generalization of Lemma 4 and Theorem 7 in Jiang (2020). In particular, Jiang (2020)’s Lemma
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4 reduces to the case q = 0 below, and Jiang (2020)’s Theorem 7 relies on the results below for

q = 0, 1. The proof largely follows the proofs of these two results of Jiang (2020).

We first state the following fact readily verified by differentiation.

Lemma D.8. For all integer m ≥ 0:

sup
t∈R
|tmφ(t)| = mm/2φ(

√
m).

As a corollary, there exists absolute Cm > 0 such that t 7→ tmφ(t) is Cm-Lipschitz.

Proposition D.1. Fix some q ∈ N ∪ {0} and M > 1. Consider the pseudometric

d
(q)
∞,M (G1, G2) = max

i∈[n]
max
0≤v≤q

sup
|x|≤M

∣∣∣∣∫ (u− x)v

νvi
φ

(
x− u
νi

)
(G1 −G2)(du)

∣∣∣∣︸ ︷︷ ︸
dq,i,m(G1,G2)

.

Let νℓ, νu be the lower and upper bounds of νi. Then, for all 0 < δ < exp(−q/2) ∧ e−1,

logN(δ logq/2(1/δ),P(R), d(q)∞,M ) ≲q,νu,νℓ log
2(1/δ)max

(
M√

log(1/δ)
, 1

)
.

Proof. The proof strategy is as follows. First, we discretize [−M,M ] into a union of small intervals

Ij . Fix G. There exists a finitely supported distribution Gm that matches moments of G on

every Ij . It turns out that such a Gm is close to G in terms of ∥·∥q,∞,M . Next, we discipline

Gm by approximating Gm with Gm,ω, a finitely supported distribution supported on the fixed grid

{kω : k ∈ Z} ∩ [−M,M ]. Finally, the set of all Gm,ω’s may be approximated by a finite set of

distributions, and we count the size of this finite set.

D.11.1. Approximating G with Gm. First, let us fix some ω < φ(
√
q) ∧ φ(1).

Let a = νu
νℓ
φ+(ω) ≥ 1. Let Ij = [−M + (j − 2)aνℓ,−M + (j − 1)aνℓ] be such that

I = [−M − aνℓ,+M + aνℓ] ⊂
⋃
j

Ij

where Ij is a width aνℓ interval. Let j
∗ = ⌈2Maνℓ + 2⌉ be the number of such intervals.

There exists by Carathéodory’s theorem a distribution Gm with support on I and no more than

m = (2k∗ + q + 1)j∗ + 1

support points s.t. the moments match∫
Ij

ukdG(u) =

∫
Ij

ukdGm(u) for all k = 0, . . . , 2k∗ + q and j = 1, . . . , j∗.

for some k∗ to be chosen later.

Then, for some x ∈ Ij ∩ [−M,M ], we have

dq,i,M (G,Gm) ≤ max
0≤v≤q

[∣∣∣∣∫
(Ij−1∪Ij∪Ij+1)C

(
u− x
νi

)v
φ

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣ (D.35)
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+

∣∣∣∣∫
Ij−1∪Ij∪Ij+1

(
u− x
νi

)v
φ

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣
]

(D.36)

Note that tvφ(t) is a decreasing function for all t >
√
v. Note that ω < φ(

√
q) implies that

aνu/νℓ = φ+(ω) >
√
q. Hence, the integrand in (D.35) is bounded by φ+(ω)

vω, as |u−x|
νi
≥

aνℓ/νu = φ+(ω):

(D.35) ≤ 2 max
0≤v≤q

φ+(ω)
vω = 2φ+(ω)

qω.

Note that

φ(t) =

∞∑
k=0

(−t2/2)k√
2πk!

=

k∗∑
k=0

(−t2/2)k√
2πk!

+R(t)

Thus the second term (D.36) can be written as the maximum-over-v of the absolute value of

k∗∑
k=0

∫ (
x−u
νi

)v+2k
(−1/2)k

√
2πk!

[G(du)−Gm(du)] +
∫
R

(
x− u
νi

)(
x− u
νi

)v
[G(du)−Gm(du)]

The first term in the line above is zero since the moments match up to 2k∗ + q. Therefore (D.36)

is equal to

(D.36) = max
0≤v≤q

∣∣∣∣∫
(Ij−1∪Ij∪ICj+1)

(
u− x
νi

)v
R

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣.
We know that since φ(t) has alternating-signed Taylor expansion,

|R(t)| ≤ (t2/2)k
∗+1

√
2π(k∗ + 1)!

We can bound |u−xνi | ≤ 2aνℓ/νi ≤ 2a. Hence the integral is upper bounded by

(D.36) ≤ 2 · (2a)q ·
(
(2a)2/2

)k∗+1

√
2π(k∗ + 1)!

((2a)v ≤ (2a)q)

≤ 2(2a)q

(2π)
√
k∗ + 1

(
2a2

k∗ + 1
e

)k∗+1

(Recall Stirling’s formula (k∗ + 1)! ≥
√
2π(k∗ + 1)

(
k∗+1
e

)k∗+1
.)

≤ (2a)q

π
√
k∗ + 1

(e
3

)k∗+1
(Choosing k∗ + 1 ≥ 6a2 ≥ 6)

≤ (2a)q

π
√
k∗ + 1

exp

(
−1

2

k∗ + 1

6

)
((e/3)6 ≤ e−1/2)

≤ (2a)q
√
k∗ + 1

√
π/2

φ(aνℓ/νu)︸ ︷︷ ︸
φ(φ+(ω))

(k∗ + 1 ≥ 6a2 ≥ 6(aνℓ/νu)
2)

≤ (2a)q
√
k∗ + 1

√
π/2

ω

≤ 2q√
3π

(
νu
νℓ

)q−1

φq−1
+ (ω)ω (k∗ + 1 ≥ 6a2)
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This bounds (D.35) + (D.36) uniformly over |x| ≤M . Therefore,

dq,i,M (G,Gm) ≤
(
2 +

2q√
3π

(νu/νℓ)
q−1

)
· φq+(ω)ω ≲q,νu,νℓ log

q/2(1/ω)ω.

D.11.2. Disciplining Gm onto a fixed grid. Now, consider a gridding of Gm via Gm,ω. We construct

Gm,ω to be the following distribution. For a draw ξ ∼ Gm, let ξ̃ = ω sgn(ξ)⌊|ξ|/ω⌋. We let Gm,ω

be the distribution of ξ̃. Gm,ω has at most m = (2k∗+ q+1)j∗+1 support points by construction,

and all its support points are multiples of ω.

Since ∫
g(x, u)Gm,ω(du) =

∫
g(x, ω sgn(u)⌊|u|/ω⌋)Gm(du)

we have that∣∣∣∣∫ g(x, u)Gm,ω(du)−
∫
g(x, u)Gm(du)

∣∣∣∣ ≤ ∫ |g(x, ω sgn(u)⌊|u|/ω⌋)− g(x, u)|Gm(du)

In the case of g(x, u) = ((x− u)/νi)v φ((x − u)/νi), this function is Lipschitz by Lemma D.8, we

thus have that,

dq,i,M (Gm, Gm,ω) ≤
∫
Cq

ω

νi
Gm(du) ≲νℓ,q ω.

So far, we have shown that there exists a distribution with at most m support points, supported

on the lattice points {jω : j ∈ Z, |jω| ∈ I}, that approximates G up to

Cq,νu,νℓω logq/2(1/ω)

in d
(q)
∞,M (·, ·).

D.11.3. Covering the set of Gm,ω. Let ∆m−1 be the (m − 1)-simplex of probability vectors in m

dimensions. Consider discrete distributions supported on the support points of Gm,ω, which can

be identified with a subset of ∆m−1. Thus, there are at most N(ω,∆m−1, ∥·∥1) such distributions

that form an ω-net in ∥·∥1. Now, consider a distribution G′
m,ω where

∥G′
m,ω −Gm,ω∥1 ≤ ω.

Since tqφ(t) is bounded, we have that

∥G′
m,ω −Gm,ω∥q,i,M ≤ ω max

0≤v≤q
vv/2φ(

√
v) ≲q ω

by Lemma D.8.

There are at most (
1 + 2⌊(M + aνℓ)/ω⌋

m

)
configurations of m support points. Hence there are a collection of at most(

1 + 2⌊(M + aνℓ)/ω⌋
m

)
N(ω,∆m−1, ∥·∥1)

distributions G where

min
H∈G
∥G−H∥q,∞,M ≤ Cq,νu,νℓ log(1/ω)

q/2ω︸ ︷︷ ︸
ω∗

.
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D.11.4. Putting things together. In other words,

N(ω∗,P(R), ∥·∥q,∞,M ) ≤
(
1 + 2⌊(M + aνℓ)/ω⌋

m

)
N(ω,∆m−1, ∥·∥1)

≤
(
(ω + 2)(ω + 2(M + aνℓ))e

m

)m
ω−2m(2πm)−1/2

((6.24) in Jiang (2020))

Since ω < 1 and m ≥ 212a2+3+q
aνℓ

(M + aνℓ), the first term is of the form Cm:

(ω + 2)(ω + 2(M + aνℓ))e

m
≤ 3e

m
(1 + 2(M + aνℓ)) ≲

aνℓ
12a2 + 3 + q

≲ νℓ.

Therefore

logN(ω∗,P(R), ∥·∥q,∞,M ) ≲ m · | log(1/ω)|+m| log νℓ| ≲νℓ,νu,q m log(1/ω).

Finally, since m = (2k∗ + q+1)j∗ +1. Recall that we have required k∗ +1 ≥ 6a2, and it suffices

to pick k∗ = ⌈6a2⌉. Then

m ≲q,νu,νℓ log(1/ω)max

(
M√

log(1/ω)
, 1

)
.

Hence

logN(ω∗,P(R), ∥·∥q,∞,M ) ≲q,νu,νℓ log(1/ω)
2max

(
M√

log(1/ω)
, 1

)
.

Lastly, let K equal the constant in ω∗ = K log(1/ω)q/2ω. Note that we can take K ≥ 1. For some

c > 1 such that log(cK)q/2 < c, we plug in ω = δ
cK such that whenever δ < cK(φ(1)∧φ(√q))∧e−q/2,

the covering number bound holds for

ω∗ =
δ

c
log(cK/δ)q/2 ≤ δ log(1/δ)q/2.

In this case,

N
(
δ log(1/δ)q/2,P(R), ∥·∥q,∞,M )

)
≤ N

(
ω∗ log(1/δ)q/2,P(R), ∥·∥q,∞,M )

)
≲q,νu,νℓ log(1/ω)

2max

(
M√

log(1/ω)
, 1

)

≲q,νu,νℓ log(1/δ)
2max

(
M√

log(1/δ)
, 1

)
This bound holds for all sufficiently small δ. Since δ log(1/δ)q/2 is increasing over (0, e−q/2 ∧ e−1)

and the right-hand side does not vanish over the interval, we can absorb larger δ’s into the constant.

□

As a consequence, we can control the covering number in terms of dk,∞,M for k ∈ {m, s}
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Proposition D.2. Consider d
(q)
∞,M in Proposition D.1, ds,∞,M in (D.20), and dm,∞,M in (D.17) for

some M > 1. Then

d
(2)
∞,M (H1, H2) ≤ δ =⇒ ds,∞,M (H1, H2) ≲H

M
√
log(1/ρn) + log(1/ρn)

ρn
δ.

and

d
(2)
∞,M (H1, H2) ≤ δ =⇒ dm,∞,M (H1, H2) ≲H

√
log(1/ρn)

ρn
δ.

As a corollary, for all δ ∈ (0, 1/e),

logN

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dm,∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)

logN

(
δ log(1/δ)

ρn

(
M
√
log(1/ρn) + log(1/ρn)

)
,P(R), ds,∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)
.

Proof. Recall that

Ds,i(zi, G, η0, ρn) =
si
σ2i

Qi(Zi, η0, G)

fi,G ∨ ρn
νi

.

Hence

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)|

≲H
1

fi,G1 ∨
ρn
νi

|Qi(Zi, η0, G1)−Qi(Zi, η0, G2)|+ |Qi(Zi, η0, G2)|

∣∣∣∣∣ 1

fi,G1 ∨
ρn
νi

− 1

fi,G1 ∨
ρn
νi

∣∣∣∣∣
≲H

1

ρn
|fi,G1EG1,νi [(Z − τ)τ | z]− fi,G2EG2,νi [(Z − τ)τ | z]|

+
M
√
log(1/ρn) + log(1/ρn)

ρn
|fi,G1 − fi,G2 |

where the last inequality follows from the definition of Qi and Lemma D.13.

Note that

fi,G1EG1,νi [(Z − τ)τ | z] = fi,G1EG1,νi [(Z − τ)2 | z]− zfi,G1EG1,νi [(Z − τ) | z].

Thus we can further upper bound, by the bound on d
(2)
∞,M ,

|EG1,νi [(Z − τ)τ | z]−EG2,νi [(Z − τ)τ | z]| ≲H δ(1 +M) ≲Mδ.

Similarly, |fi,G1 − fi,G2 | ≲H δ. Hence,

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)| ≲H

{
M

ρn
+ ρ−1

n

(
M
√
log(1/ρn) + log(1/ρn)

)}
δ

≲H
M
√
log(1/ρn) + log(1/ρn)

ρn
δ.

Similarly,

Dm,i(z,G, η0) =
si
σ2i

fi,GEG,νi [(Z − τ) | z]
fi,G ∨ ρn/νi

.
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Therefore

|Dm,i(z,G1, η0)−Dm,i(z,G2, η0)| ≲H
1

ρn
δ +

1

ρn

√
log(1/ρn)δ ≲

1

ρn

√
log(1/ρn)

by a similar calculation, involving Lemma D.10.

Thus, for the “corollary” part, note that, letting CH be the constant in the bound, taken to be

at least 1:

N

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dm,∞,M

)
≤ N

(
δ

CH
log(1/(δ/(CH))),P(R), d(2)∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)
.

for all 0 < δ < 1/e. Similarly for the covering number in ds,∞,M . □

D.12. Auxiliary lemmas.

Lemma D.9. Suppose |Zn| = maxi∈[n] |Zi| ∨ 1 ≤ Mn, ∥ŝ − s0∥∞ ≤ ∆n, and ∥m̂ −m0∥∞ ≤ ∆n.

Let Ĝn satisfy Assumption 1. Then, under Assumption D.1,

(1) |Ẑi ∨ 1| ≲H Mn

(2) There exists CH such that with ρn = 1
n3 exp

(
−CHM

2
n∆n

)
∧ 1
e
√
2π
,

fĜn,νi(Zi) ≥
ρn
νi
.

(3) The choice of ρn satisfies log(1/ρn) ≍H log n, φ+(ρn) ≍H
√
log n, and ρn ≲H n−3.

Proof. Observe that |Ẑi| ∨ 1 ≲σℓ,σu,s0ℓ,s0u (1 + ∆n)Mn + ∆n ≲ (1 + ∆n)Mn by Lemma D.11(3).

Hence by Assumption D.1, |Ẑi| ∨ 1 ≲H Mn.

For (2), we note by Theorem 5 in Jiang (2020),

fĜn,ν̂i(Ẑi) ≥
1

n3ν̂i

thanks to κn in (3.3). That is, ∫
φ

(
Ẑi − τ
ν̂i

)
Ĝn(dτ) ≥

1

n3
.

Now, note that

Ẑi − τ
ν̂i

=
Zi +

m0i−m̂i
s0i

+
(
1− ŝi

s0i

)
τ − τ

νi
=
Zi − τ
νi

+
m0i − m̂i

σi
+

1

σi
(si − s0i)τ =

Zi − τ
νi

+ ξ(τ)

(D.37)

where |ξ(τ)| ≲H ∆nMn over the support of τ under Ĝn, under our assumptions.

Then, for all Zi, since |Zi| ≤Mn by assumption,

φ

(
Ẑi − τ
ν̂i

)
= φ

(
Zi − τ
νi

)
exp

(
−1

2
ξ2(τ)− ξ(τ)Zi − τ

νi

)
≤ φ

(
Zi − τ
νi

)
exp

(
CH∆nMn

∣∣∣∣Zi − τνi

∣∣∣∣)
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≤ φ
(
Zi − τ
νi

)
exp

(
CH∆nM

2
n

)
. (

∣∣∣Zi−τνi

∣∣∣ ≲H Mn)

Therefore, ∫
φ

(
Zi − τ
νi

)
Ĝn(dτ) ≥

1

n3
e−CH∆nM2

n .

Dividing by νi on both sides finishes the proof of (2). Claim (3) is immediate by calculating

log(1/ρn) =
(
3 log n− CHM

2
n∆

2
n

)
∨ log(e

√
2π) ≲H log n and apply Assumption D.1(1) to obtain

that ∆nM
2
n ≲H 1. □

Lemma D.10 (Lemma 2 Jiang (2020)). For all x ∈ R and all ρ ∈ (0, 1/
√
2πe),∣∣∣∣ ν2f ′H,ν(x)

(ρ/ν) ∨ fH,ν(x)

∣∣∣∣ ≤ νφ+(ρ).

Moreover, for all x ∈ R and all ρ ∈ (0, e−1/
√
2π),∣∣∣∣

(
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)(
νfH,ν(x)

(νfG,ν(x)) ∨ ρ

)∣∣∣∣ ≤ φ2
+(ρ),

where we recall φ+ from (C.3).

Proof. The first claim is immediate from Lemma 2 in Jiang (2020). The second claim follows from

parts of the proof. Lemma 1 in Jiang (2020) shows that

0 ≤
ν2f ′′H,ν(x)

fH,ν(z)
+ 1 ≤ log

1

2πν2fH,ν(z)2︸ ︷︷ ︸
φ2
+(νfH,ν(z))

.

Case 1 (νfH,ν(x) ≤ ρ < e−1/
√
2π): Observe that t log 1

2πt2
is increasing over t ∈ (0, e−1(2π)−1/2).

Hence, (
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)
νfH,ν(x) ≤ νfH,ν log

1

2πν2fH,ν(z)2
≤ ρ log 1

2πρ2
.

Dividing by (νf) ∨ ρ = ρ confirms the bound for νf < ρ.

Case 2 (νf > ρ): Since log 1
2πt2

is decreasing in t, we have that∣∣∣∣
(
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)(
νfH,ν(x)

(νfG,ν(x)) ∨ ρ

)∣∣∣∣ = ν2f ′′H,ν(x)

fH,ν(z)
+ 1 ≤ φ2

+(νfH,ν) ≤ log
1

2πρ2
.

□

Lemma D.11. The following statements are true:

(1) Under Assumption 4, 1/ν̂i ≲s0u,σℓ 1 and ν̂i ≲s0ℓ,σu 1

(2) Under Assumption 4, |1− s0i
ŝi
| ≲s0ℓ ∥ŝ− s0∥∞

(3) Under Assumption 4,

max
i
|Ẑi| ≲σℓ,σu,s0ℓ,s0u (1 + ∥ŝ− s0∥∞)Zn + ∥m̂−m0∥∞

where Zn is defined in (C.5).
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Proof. (1) Immediate by 1/ν̂i = ŝi/σi and P[s0ℓ < ŝi < s0u] = 1.

(2) Immediate by observing that |1− s0i
ŝi
| = | ŝi−s0iŝi

| and P[s0ℓ < ŝi < s0u] = 1.

(3) Immediate by Ẑi =
s0i
ŝi
Zi + [m0i − m̂i]

□

Lemma D.12 (Zhang (1997), p.186). Let f be a density and let σ(f) be its standard deviation.

Then, for any M, t > 0, ∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤ σ(f)2

M2
+ 2Mt.

In particular, choosing M = t−1/3σ(f)2/3 gives∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤ 3t2/3σ2/3.

Proof. Since the value of the integral does not change if we shift f(z) to f(z− c), it is without loss
of generality to assume that Ef [Z] = 0.∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤

∫ ∞

−∞
1(f(z) ≤ t, |z| < M)f(z) dz +

∫ ∞

−∞
1(f(z) ≤ t, |z| > M)f(z) dz

≤
∫ M

−M
t dz + P(|Z| > M)

≤ 2Mt+
σ2(f)

M2
. (Chebyshev’s inequality)

□

Lemma D.13. Recall that Qi(z, η,G) =
∫
(z − τ)τφ

(
z−τ
νi(η)

)
1

νi(η)
G(dτ). Then, for any G, z and

ρn ∈ (0, e−1/
√
2π), ∣∣∣∣ Qi(z, η0, G)

fG,νi(z) ∨ (ρn/νi)

∣∣∣∣ ≤ φ+(ρn) (νi|z|+ νiφ+(ρn)) . (D.38)

Proof. We can write

Qi(z, η0, G) = fG,νi(z)
{
zEG,νi [(z − τ) | z]−EĜn,νi [(z − τ)

2 | z]
}
.

From Lemma D.10,
fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
EG,νi [(z − τ) | z] ≤ νiφ+(ρn)

and

fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
EG,νi [(z − τ)2 | z] = ν2i

(
ν2i f

′′
i,G

fi,G
+ 1

)
fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
≤ ν2i φ2

+(ρn).

Therefore, ∣∣∣∣ Qi(z, η0, G)

fG,νi(z) ∨ (ρn/νi)

∣∣∣∣ ≤ φ+(ρn)νi (|z|+ φ+(ρn)) .

□

Lemma D.14. Under the assumptions in Lemma D.9, suppose η̃i lies on the line segment between

η0 and η̂i and define ν̃i, m̃i, s̃i, Z̃i accordingly. Then, the second derivatives (D.29), (D.31), (D.32),
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evaluated at η̃i, Ĝn, Z̃i, satisfy

|(D.29)| ≲H log n

|(D.31)| ≲H Mn log n

|(D.32)| ≲H M2
n log n.

Proof. First, we show that

| log(fĜn,ν̃i(Z̃i)ν̃i)| ≲H log n. (D.39)

Observe that we can write

Ẑi =
s̃iZ̃i + m̃i − m̂i

ŝi
.

where ∥s̃ − ŝ∥∞ ≤ ∆n and ∥m̃ − m̂∥∞ ≤ ∆n. This also shows that |Z̃i| ≲H Mn under the

assumptions.

Note that by the same argument in (D.37) in Lemma D.9, we have that

φ

(
Ẑi − τ
ν̂i

)
≤ φ

(
Z̃i − τ
ν̃i

)
e−CH∆nM2

n .

Hence,

ν̃ifĜ(i),ν̃i
(Z̃i) ≥

1

n3
e−CH∆nM2

n .

This shows (D.39).

Now, observe that

EĜn,ν̃ [(τ − Z)
2 | Z̃i] ≲H log

 1

ν̃ifĜ(i),ν̃i
(Z̃i)

 ≲H log n

and

EĜn,ν̃ [|τ − Z| | Z̃i] ≲H

√√√√√log

 1

ν̃ifĜ(i),ν̃i
(Z̃i)

 ≲H
√

log n

by Lemma D.10, since we can always choose ρ = ν̃ifĜ(i),ν̃i
(Z̃i) ∧ 1√

2πe
. Similarly, by Lemma D.13,

and plugging in ρ = ν̃ifĜ(i),ν̃i
(Z̃i) ∧ 1√

2πe
,∣∣∣EĜn,ν̃ [(τ − Z)Z | Z̃i]∣∣∣ ≲H

√
log n|Z̃i|+ log n ≲H

√
log nMn.

Observe that ∣∣∣EĜn,ν̃i [(τ − Z)2τ | Z̃i]∣∣∣ ≲H MnEĜn,ν̃i [(τ − Z)
2] ≲H Mn log n.

since |τ | ≲H Mn under Ĝn. Similarly,

EĜn,ν̃i [(Z − τ)
2τ2 | Z̃i] ≲H M2

n log n EĜn,ν̃i [τ
2 | Z̃i] ≲H M2

n.

Plugging these intermediate results into (D.29), (D.31), (D.32) proves the claim. □
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Lemma D.15. Let X1, . . . , XJ be subgaussian random variables with K = maxi∥Xi∥ψ2 , not nec-

essarily independent. Then for some universal C, for all t ≥ 0,

P

[
max
i
|Xi| ≥ CK

√
log J + CKt

]
≤ 2e−t

2
.

Proof. By (2.14) in Vershynin (2018), P(|Xi| > t) ≤ 2e
−ct2/∥Xi∥2ψ2 ≤ 2e−ct

2/K for some universal c.

By a union bound,

P

[
max
i
|Xi| ≥ Ku

]
≤ 2 exp

(
−cu2 + log J

)
Choose u = 1√

c
(
√
log J + t) so that cu2 = log J + t2 + 2t

√
log J ≥ log J + t2. Hence

2 exp
(
−cu2 + log J

)
≤ 2e−t

2
.

Implicitly, C = 1/
√
c. □

Lemma D.16. Suppose Z has simultaneous moment control E[|Z|p]1/p ≤ Ap1/α. Then

P(|Z| > M) ≤ exp (−CA,αMα) .

As a corollary, suppose Z ∼ fG0,νi(·) and G0 obeys Assumption 2, then

P(|Z| > M) ≤ exp (−CA0,α,νuM
α) .

Proof. Observe that

P(|Z| > M) = P(|Z|p > Mp) ≤

{
Ap1/α

M

}p
. (Markov)

Choose p = (M/(eA))α such that{
Ap1/α

M

}p
= exp (−p) = exp

(
−
(

1

eA

)α
Mα

)
.

□

Lemma D.17. Let E be some event and assume that

P(E,A > a) ≤ p1 P(E,B > b) ≤ p2

Then P(E,A+B > a+ b) ≤ p1 + p2

Proof. Note that A+B > a+ b implies that one of A > a and B > b occurs. Hence

P(E,A+B > a+ b) ≤ P({E,A > a} ∪ {E,B > b}) ≤ p1 + p2

by union bound. □

Lemma D.18. Let τ ∼ G0 where G0 satisfies Assumption 2. Let Z | τ ∼ N (τ, ν2). Then the

posterior moment is bounded by a power of |z|:

E[|τ |p | Z = z] ≲p (|z| ∨ 1)p
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Proof. Let M ≥ |z| ∨ 2. We write

E[|τ |p | Z = z] =
1

fG0,ν(z)

∫
|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ).

Note that∫
|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ) ≤ (3M)pfG0,ν(z) +

∫
1(|τ | > 3M)|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ)

≤ (3M)pfG0,ν(z) +

∫
|τ |>3M

|τ |pG0(dτ) ·
1

ν
φ (|2M |/ν)

(|z − τ | ≥ 2M when |τ | > 3M)

Also note that

fG0,ν(z) =

∫
φ

(
z − τ
ν

)
1

ν
G0(dτ) ≥

1

ν
φ (|2M |/ν)G0([−M,M ]) (|z − τ | ≤ 2M if τ ∈ [−M,M ])

Hence,

E[|τ |p | Z = z] ≤ (3M)p +

∫
|τ |pG0(dτ)

G0([−M,M ])

SinceG0 is mean zero and variance 1, by Chebyshev’s inequality, G0([−M,M ]) ≥ G0([−2, 2]) ≥ 3/4.

Hence

E[|τ |p | Z = z] ≲p M
p ≲p (|z| ∨ 1)p,

since we have simultaneous moment control by Assumption 2. □

Appendix E. A large-deviation inequality for the average Hellinger distance

Theorem E.1. For some n >
√
2πe, let τ1, . . . , τn | (ν21 , . . . , ν2n)

i.i.d.∼ G0 where G0 satisfies Assump-

tion 2. Let νu = maxi νi and νℓ = mini νi. Assume Zi | τi, ν2i ∼ N (τi, ν
2
i ). Fix positive sequences

γn, λn → 0 with γn, λn ≤ 1 and constant ϵ > 0. Fix some positive constant C∗. Consider the set of

distributions that approximately maximize the likelihood

A(γn, λn) =
{
H : Subn(H) ≤ C∗ (γ2n + h(fH,·, fG0,·)λn

)}
.

Also consider the set of distributions that are far from G0 in h:

B(t, λn, ϵ) =
{
H : h(fH,·, fG0,·) ≥ tBλ1−ϵn

}
with some constant B to be chosen. Assume that for some Cλ,

λ2n ≥
(
Cλ
n

(log n)1+
α+2
2α

)
∨ γ2n.

Then the probability that A∩B is nonempty is bounded for t > 1: There exists a choice of B that

depends only on νℓ, νu, C
∗, Cλ such that

P [A(γn, λn) ∩B(t, λn, ϵ) ̸= ∅] ≤ (log2(1/ϵ) + 1)n−t
2
. (E.1)
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Corollary E.1. Let λn = n
− p

2p+1 (log n)γ1 ∧1 and γn = n
− p

2p+1 (log n)γ2 ∧1 where γ1 ≥ γ2 > 0. Fix

some C∗
H. Fix ϵ > 0. Then there exists BH that depends solely on C∗

H, p, γ1, γ2, νℓ, νu such that

P
[
There exists H: Subn(H) ≤ C∗

H(γ
2
n + h(fH,·, fG0,·)λn) and h(fH,·, fG0,·) ≥ tBHn

− p
2p+1 (log n)γ1

]
≤
(
log logn

log 2
+ 1

)
n−t

2

Proof. First, note that λ2n ≥ γ2n and λ2n ≳ (logn)1+
α+2
2α

n .

Note that tBλ1−ϵn ≤ tBHn
− p

2p+1
+ϵ p

2p+1 (log n)γ1 ≤ tBHn
− p

2p+1
+ϵ
(log n)γ1 . Therefore,{

H : h(fH,·, fG0,·) ≥ tBHn
− p

2p+1
+ϵ
(log n)γ1

}
⊂
{
H : h(fH,·, fG0,·) ≥ tBλ1−ϵn

}
.

As a result, the probability

P
[
There exists H: Subn(H) ≤ C∗

H(γ
2
n + h(fH,·, fG0,·)λn) and h(fH,·, fG0,·) ≥ tBHn

− p
2p+1

+ϵ
(log n)γ1

]
is upper bounded by

P [A(γn, λn) ∩B(t, λn, ϵ) ̸= ∅] ≤ (log2(1/ϵ) + 1)n−t
2

via an application of Theorem E.1.

Finally, set ϵ = 1
logn . Note that nϵ = n

1
logn = exp (log n/ log n) = e. Hence

tBHn
− p

2p+1
+ϵ
(log n)γ1 = tBHen

− p
2p+1 (log n)γ1 . □

Corollary E.2. Assume the conditions in Corollary D.1. That is,

(1) The estimate Ĝn satisfies Assumption 1.

(2) For β ≥ 0, and suppose that ∆n,Mn take the form (D.2).

(3) Suppose Assumptions 2 to 4 hold.

Define the rate function

δn = n−p/(2p+1)(log n)
2+α
2α

+β. (E.2)

Then, there exists some constant BH, depending solely on C∗
H in Corollary D.1, β, and p, νℓ, νu

such that

P
[
Zn ≤Mn, ∥η̂ − η∥∞ ≤ ∆n, h(fĜn,·, fG0,·) > BHδn

]
≤
(
log logn

log 2
+ 10

)
1

n
.

Proof. Let γ = 2+α
2α + β. We first verify that, for εn in (D.3), we make the choices

λn = n−p/(2p+1)(log n)
2+α
2α

+β ∧ 1 γn = n−p/(2p+1)(log n)
2+α
2α

+β ∧ 1

does satisfy λ2n ≥ γ2n, as required by Corollary D.1. Since εn ≲ λnh+ γ2n, the truncation by 1 only

affects our subsequent results by constant factors.

The event in question is a subset of the union of{
Zn ≤Mn, ∥η̂ − η∥∞ ≤ ∆n,Subn(Ĝn) > C∗

Hεn

}
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and {
Zn ≤Mn, ∥η̂ − η∥∞ ≤ ∆n,Subn(Ĝn) ≤ C∗

Hεn, h(fĜn,·, fG0,·) > BHn
−p/(2p+1)(log n)γ

}
.

The first event has measure at most 9/n by Corollary D.1, and there exists a choice of BH such

that the second has measure at most n−1
(
log logn
log 2 + 1

)
by Corollary E.1. We conclude the proof

by applying a union bound. □

E.1. Proof of Theorem E.1.

E.1.1. Decompose B(t, λn, ϵ). We decompose B(t, λn, ϵ) ⊂
⋃K
k=1Bk(t, λn) where, for some constant

B to be chosen,

Bk =
{
H : h (fH,·, fG0,·) ∈

(
tBλ1−2−k

n , tBλ1−2−k+1

n

]}
.

The relation B(t, λn, ϵ) ⊂
⋃
k Bk holds if we take K = ⌈| log2(1/ϵ)|⌉, since, in that case, K ≥

log2(1/ϵ) =⇒ 2−K ≤ ϵ =⇒ λ1−2−K
n ≤ λ1−ϵn .

We will bound

P(A(γn, λn) ∩Bk(t, λn) ̸= ∅) ≤ n−t2

which becomes the bound (E.1) by a union bound. For k ∈ [K], define µn,k = Bλ1−2−k+1

n such that

Bk =
{
H : h (fH,·, fG0,·) ∈ (tµn,k+1, tµn,k]

}
. To that end, fix some k.

E.1.2. Construct a net for the set of densities fG. Fix a positive constant M and define the semi-

norm

∥G∥∞,M = max
i∈[n]

sup
y∈[−M,M ]

fG,νi(y).

Note that ∥G∥∞,M is proportional to ∥G∥0,∞,M defined in Proposition D.1. Fix ω = 1
n2 > 0 and

consider an ω-net for the distribution P(R) under ∥·∥∞,M . Let N = N(ω,P(R), ∥·∥∞,M ) and the

ω-net is the distributions H1, . . . ,HN . For each j, let Hk,j be the distribution with

h(fHk,j ,·, fG0,·) ≥ µn,k+1

if it exists, and let Jk collect the indices for which Hj,k exists.

E.1.3. Project to the net and upper bound the likelihood. Fix a distribution H ∈ Bk(t, λn). There

exists some Hj where ∥H −Hj∥∞,M ≤ ω. Moreover, H serves as a witness that Hk,j exists, with

∥H −Hk,j∥∞,M ≤ 2ω.

We can construct an upper bound for fH,νi(z) via

fH,νi(z) ≤

fHk,j ,νi(z) + 2ω |z| < M

1√
2πνi

|z| ≥M
.

Define

v(z) = ω1(|z| < M) +
ωM2

z2
1(|z| ≥M).

Observe that

fH,νi(z) ≤
fHk,j ,νi(z) + 2v(z)
√
2πνiv(z)

if |z| > M
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fH,νi(z) ≤ fHk,j ,νi(z) + 2v(z) if |z| ≤M.

Hence, the likelihood ratio between H and G0 is upper bounded:

n∏
i=1

fH,νi(Zi)

fG0,νi(Zi)
≤

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

∏
i:|Zi|>M

1√
2πνiv(Zi)

≤

(
max
j∈Jk

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

) ∏
i:|Zi|>M

1√
2πνiv(Zi)

If H ∈ A(t, γn, λn), then the likelihood ratio is lower bounded:

n∏
i=1

fH,νi(Zi)

fG0,νi(Zi)
≥ exp

(
−nC∗(γ2n + h (fH,·, fG0,·)λn)

)
≥ exp

(
−ntC∗(tγ2n + h (fH,·, fG0,·)λn)

)
.

(t > 1)

Hence,

P [A(t, γn, λn) ∩Bk(t, λn) ̸= ∅]

≤ P

{(
max
j∈Jk

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

) ∏
i:|Zi|>M

1√
2πνiv(Zi)

≥ exp
(
−nt2C∗(γ2n + µn,kλn)

)}

≤ P

[
max
j∈Jk

n∏
i=1

fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)
≥ e−nt2aC∗(γ2n+µn,kλn)

]
(E.3)

+ P

 ∏
i:|Zi|>M

1√
2πνiv(Yi)

≥ ent2(a−1)C∗(γ2n+µn,kλn)

 (E.4)

The first inequality follows from plugging in h ≤ tµn,k. The second inequality follows from choosing

some a > 1 and applying union bound.

E.1.4. Bounding (E.3). We consider bounding the first term (E.3) now:

(E.3) ≤
∑
j∈Jk

P

[
n∏
i=1

fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)
≥ e−nat2C∗(γ2n+µn,kλn)

]
(Union bound)

≤
∑
j∈Jk

E

[
n∏
i=1

√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

]
enat

2C∗(γ2n+µn,kλn)/2

(Take square root of both sides, then apply Markov’s inequality)

=
∑
j∈Jk

enat
2C∗(γ2n+µn,kλn)/2

n∏
i=1

E

[√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

]
(E.5)

where the last step (E.5) is by independence over i. Note that

E

[√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Yi)

]
=

∫ ∞

−∞

√
fHk,j ,νi(x) + 2v(x)

√
fG0,νi(x) dx
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≤ 1− h2(fHk,j ,νi , fG0,νi) +

∫ ∞

−∞

√
2v(x)fG0,νi(x) dx

(
√
a+ b ≤

√
a+
√
b)

≤ 1− h2(fHk,j ,νi , fG0,νi) +

(
2

∫ ∞

−∞
v(x) dx

)1/2

(Jensen’s inequality)

= 1− h2(fHk,j ,νi , fG0,νi) +
√
8Mη (Direct integration)

Also note that, for ti > 0, we have∏
i

ti = exp
∑
i

log ti ≤ exp

(∑
i

(ti − 1)

)
.

and thus
n∏
i=1

E

[√
fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)

]
≤ exp

[
−nh2(fHk,j ,·, fG0,·) + n

√
8Mω

]
.

Thus, we can further bound (E.5):

(E.3) ≤ (E.5) =
∑
j∈Jk

enαt
2(γ2n+µn,kλn)/2

n∏
i=1

E

[√
fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)

]

≤
∑
j∈Jk

exp

{
nat2C∗

2
(γ2n + µn,kλn)− nh

2
(fHk,j ,·, fG,·) + n

√
8Mω

}

≤
∑
j∈Jk

exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω

}

≤ exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω + logN

}
(|Jk| ≤ N)

≤ exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω + C| logω|2max

(
M√
| logω|

, 1

)}
(Proposition D.1, q = 0)

= exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 +

√
8M + C(log n)2max

(
M√
log n

, 1

)}
.

(Recall that ω = 1
n2 )

E.1.5. Bounding (E.4). We now consider bounding the second term (E.4). By Markov’s inequality

again (taking x 7→ x1/(2 logn) on both sides, we can choose to bound

(E.4) ≤ E

[
n∏
i=1

(
1

(2πν2i )
1/4

Zi
M
√
ω

) 1
logn

1(|Zi|>M)
]
exp

(
−
n(a− 1)t2C∗(γ2n + µn,kλn)

2 log n

)
instead. Define

ai =
1

(2πν2i )
1/4M

√
ω
≤ Cνℓn

M
λ =

1

log n

Apply Lemma E.1 to obtain the following. Note that to do so, we require

M ≥ νu
√
8 log n p ≥ 1

log n
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Then,

logE

[
n∏
i=1

(
1

(2πν2i )
1/4

Zi
M
√
ω

) 1
logn

1(|Zi|>M)
]
= logE

[∏
i

(aiZi)
λ1(|Zi|≥M)

]

≲νu

n∑
i=1

(aiM)λ
(

1

Mn
+

2pµpp(G0)

Mp

)

≤
n∑
i=1

(Cνℓn)
1

logn

(
1

Mn
+

2pµpp(G0)

Mp

)
≲νu,νℓ

1

M
+

2pnµpp(G0)

Mp

As a result,

log[(E.4)] ≤ Cνu,νℓ
(

1

M
+

2pnµpp(G0)

Mp

)
− n(a− 1)

2 log n
t2C∗

(
γ2n +Bλ2(1−2−k)

n

)
. (E.6)

E.1.6. Choosing p,M, a and verifying conditions. By Assumption 2, µpp(G0) ≤ Ap0p
p/α. Let M =

2eA0(cm log n)1/α and p = (M/(2eA0))
1/α so that

2pµpp(G0)/M
p ≤ exp (−cm log n)

We choose cm ≥ 2 sufficiently large such that M = 2eA0(cm log n)1/α > νu
√
8 log n ∨ 1 and p ≥ 1

for all n > 2 to ensure that our application of Lemma E.1 is correct. Since α ≤ 2, such a choice is

available. Hence,
2pnµpp(G0)

Mp
≤ 1

n
.

Hence the first term in (E.6) is less than 2Cνu,νℓ .

Choose a = 1.5 to obtain that

log[(E.4)] ≤ 2Cνu,νℓ −
n

4 log n
t2C∗

(
γ2n +Bλ2(1−2−k)

n

)
≤ t2

[
2Cνu,νℓ −

n

4 log n
C∗Bλ2n

]
(t ≥ 1, γn > 0, λn < 1)

≤ t2
[
2Cνu,νℓ −

C∗BCλ
4

(log n)

]
(λ2n ≥ Cλ(log n)1+

α+2
2α /n ≥ Cλ(log n)2/n)

There exists a sufficiently large B dependent only on C∗, Cλ, Cνu,νℓ where 2Cνu,νℓ−
C∗BCλ

4 (log n) ≤
− log n for all n ≥ 2. Hence, for all sufficiently large B,

log[(E.4)] ≤ −t2 log n.

Similarly, under these choices,

log[(E.3)] ≤ −nt2
[
−3

4
C∗(γ2n +Bλ2(1−2−k)

n ) +B2λ2(1−2−k+1)
n

]
+ C(log n)1+

2+α
2α

≤ −nt2
[
−3

4
C∗(λ2n +Bλ2(1−2−k)

n ) +B2λ2(1−2−k+1)
n

]
+ C(log n)1+

2+α
2α t2 (γn ≤ λn, t ≥ 1)
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≤ −t2
[
nλ2n

(
−3

4
C∗ − 3

4
C∗B

(
1

λn

)2−k+1

+B2

(
1

λn

)2−k+2
)
− C(log n)1+

2+α
2α

]

≤ −t2
[
nλ2n

(
1

λn

)2−k+2 (
−3

4
C∗ − 3

4
C∗B +B2

)
− C(log n)1+

2+α
2α

]
(λn ≤ 1. Pick B such that −3

4C
∗ − 3

4C
∗B +B2 > 0)

≤ −t2
[
nλ2n

(
−3

4
C∗ − 3

4
C∗B +B2

)
− C(log n)1+

2+α
2α

]
≤ −t2(log n)1+

2+α
2α

[
Cλ

(
−3

4
C∗ − 3

4
C∗B +B2

)
− C

]
There exists choices ofB, depending solely on C∗, C, Cλ, Cνu,νℓ where

[
Cλ
(
−3

4C
∗ − 3

4C
∗B +B2

)
− C

]
>

1 so that the above is at most −t2 log n− log 2.

Putting the union bound together, we obtain that

(E.3) + (E.4) ≤ n−t2 .

This concludes the proof.

E.2. Auxiliary lemmas.

Lemma E.1 (Lemma 5 in Jiang (2020)). Suppose Zi | τi ∼ N (τi, ν
2
i ) where τi | ν2i ∼ G0 indepen-

dently across i. Let 0 < νu, νℓ <∞ be the upper and lower bounds for νi. Then, for all constants

M > 0, λ > 0, ai > 0, p ∈ N such that M ≥ νu
√
8 log n, λ ∈ (0, p ∧ 1), and a1, . . . , an > 0:

E

{∏
i

|aiZi|λ1(|Zi|≥M)

}
≤ exp

{
n∑
i=1

(aiM)λ
(

4νu

Mn
√
2π

+

(
2µp(G0)

M

)p)}
.

Appendix F. An oracle inequality for the Bayes squared-error risk

Recall the definition of MSERegretn in (C.4) and the event An in (C.5).

F.1. Controlling MSERegretn on AC
n . The first term is the regret when a bad event occurs, on

which either the nuisance estimates are bad or the data has large values. The probability of this

bad event is

P(AC
n ) ≤ P(∥η̂ − η∥∞ > ∆n) + P(Zn > Mn) ≤ P(∥η̂ − η∥∞ > ∆n) + n−2.

There exist choices of the constant in (D.2) for Mn such that P(Zn > Mn) ≤ n−2, by Lemma F.6.

Thus, at a minimum, the first term is o(1) for appropriate choices of ∆n,Mn such that P(AC
n )→ 0.

We can also control the expected value of MSERegretn on the bad event AC
n .

Lemma F.1. Under Assumptions 1 to 4. For β ≥ 0, suppose n > 3 and suppose ∆n,Mn satisfies

(D.2) such that P(Zn > Mn) ≤ n−2, we can decompose

E[MSERegretn(Ĝn, η̂)1(∥η̂ − η∥∞ > ∆n)] ≲H P(∥η̂ − η∥∞ > ∆n)
1/2(log n)2/α

E[MSERegretn(Ĝn, η̂)1(Zn > Mn)] ≲H
1

n
(log n)2/α
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Proof. Observe that, for an event A on the data Z1:n,

E
[
MSERegretn(Ĝn, η̂)1(A)

]
= E

[
1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2
1(A)

]

≤ E

( 1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2

)2
1/2

P(A)1/2

by Cauchy–Schwarz.

A crude bound (Lemma F.5) shows that, almost surely,{
1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2

}2

≲H Z
4
n.

Apply Lemma F.6 to find that E[Z4
n] ≲H (log n)4/α. This proves both claims. □

F.2. Controlling MSERegretn on An.

Theorem F.1. Assume the conditions in Corollary E.2. That is,

(1) Suppose Ĝn satisfies Assumption 1.

(2) For β ≥ 0, suppose ∆n,Mn satisfies (D.2).

(3) Suppose Assumptions 2 to 4 hold.

Then,

E
[
MSERegretn(Ĝn, η̂)1(An)

]
≲H n

− 2p
2p+1 (log n)

2+α
α

+3+2β

Proof. Let C∗
H be the constant in Corollary D.1 and BH be the constant in Corollary E.2. Recall

the Hellinger rate δn in (E.2).

Recall the decomposition (C.4) for MSERegretn. Note that the term corresponding to the second

term in the decomposition (C.4),

E

[
1(An)

2

n

n∑
i=1

(θ∗i − θi)(θ̂i,Ĝn,η̂ − θ
∗
i )

]
= 0,

is mean zero, since E[(θ∗i − θi) | Y1, . . . , Yn] = 0. Thus, we can focus on

E

[
1(An)

n

n∑
i=1

(θ̂i,Ĝn,η̂ − θ
∗
i )

2

]
≡ 1

n
E[1(An)∥θ̂Ĝn,η̂ − θ

∗∥2], (F.1)

where we let θ̂Ĝn,η̂ denote the vector of estimated posterior means and let θ∗ denote the correspond-

ing vector of oracle posterior means. Let the subscript ρn denote a vector of regularized posterior

means as in (C.2). Thus, we may further decompose,

∥θ̂Ĝn,η̂ − θ
∗∥ ≤ ∥θ̂Ĝn,η̂ − θ̂Ĝn,η0∥+ ∥θ̂Ĝn,η0 − θ̂Ĝn,η0,ρn∥+ ∥θ̂Ĝn,η0,ρn − θ

∗
ρn∥+ ∥θ

∗
ρn − θ

∗∥.

Let

ξ1 =
1(An)

n
∥θ̂Ĝn,η̂ − θ̂Ĝn,η0∥

2 (F.2)
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ξ2 =
1(An)

n
∥θ̂Ĝn,η0 − θ̂Ĝn,η0,ρn∥

2 (F.3)

ξ3 =
1(An)

n
∥θ̂Ĝn,η0,ρn − θ

∗
ρn∥

2 (F.4)

ξ4 =
1(An)

n
∥θ∗ρn − θ

∗∥2 (F.5)

corresponding to the square of each of the terms, such that

(F.1) ≤ 4(Eξ1 + Eξ2 + Eξ3 + Eξ4) = 4(Eξ1 + Eξ3 + Eξ4).

Observe that ξ2 = 0 by Lemma D.9, since the truncation by ρn does not bind when An occurs.

The ensuing subsections control Eξ1,Eξ3,Eξ4 individually. Putting together the rates we obtain,

we find that

ξ1 ≲H M6
n∆

2
n =⇒ Eξ1 ≲H M2

n(log n)
2∆2

n

Eξ3 ≲H (log n)3δ2n

Eξ4 ≲H
1

n

Now, observe that δn ≍H ∆nM
2
n ≳H ∆nMn log n and 1

n ≲H (log n)3δ2n. Hence, the dominating rate

is (log n)3δ2n. Plugging in δ2n in (E.2) to obtain the rate

(F.1) ≲H n
− 2p

2p+1 (log n)
2+α
α

+3+2β1 . □

F.3. Controlling ξ1.

Lemma F.2. Under the assumptions of Theorem F.1, in the proof of Theorem F.1, ξ1 ≲H

M2
n(log n)

2∆2
n.

Proof. Note that, by an application of Taylor’s theorem,∣∣∣θ̂i,Ĝn,η̂ − θ̂i,Ĝn,η0∣∣∣ = σ2i

∣∣∣∣∣∣
f ′
Ĝn,ν̂i

(Ẑi)

ŝifĜn,ν̂i(Ẑi)
−

f ′
Ĝn,νi

(Zi)

s0ifĜn,νi(Zi)

∣∣∣∣∣∣
= σ2i

∣∣∣∣∣
(
∂ψi
∂mi

∣∣∣∣
Ĝn,η̂

− ∂ψi
∂mi

∣∣∣∣
Ĝn,η0

)∣∣∣∣∣
= σ2i

∣∣∣∣∣ ∂2ψi
∂mi∂si

∣∣∣∣
Ĝn,η̃i

(ŝi − s0i) +
∂2ψi
∂m2

i

∣∣∣∣
Ĝn,η̃i

(m̂i −m0i)

∣∣∣∣∣ ,
where we use η̃i to denote some intermediate value lying on the line segment between η̂i and η0i.

By Lemma D.14,

1(An)
∣∣∣θ̂i,Ĝn,η̂ − θ̂i,Ĝn,η0∣∣∣ ≲H Mn log n∆n.

Hence, squaring both sides, we obtain ξ1 ≲H M2
n(log n)

2∆2
n. □

F.4. Controlling ξ3.

Lemma F.3. Under the assumptions of Theorem F.1, in the proof of Theorem F.1, Eξ3 ≲H

(log n)3δ2n.
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Proof. Observe that ∣∣∣θ̂i,Ĝn,η0,ρn − θ∗i,ρn∣∣∣ = s0i

∣∣∣τ̂i,Ĝn,η0,ρn − τ∗i,ρn∣∣∣
where τ̂i,Ĝn,η0,ρn is the regularized posterior with prior Ĝn at nuisance parameter η0 and τ∗i,ρn =

τ̂i,G0,η0,ρn .

We shall focus on controlling

1(An)∥τ̂Ĝn,η0,ρn − τ
∗
ρn∥

2

Fix the rate function δn in (E.2) and the constant BH in Corollary E.2 (which in turn depends on

C∗
H in Corollary D.1). Let Bn = {h(fĜn,·, fG0,·) < BHδn} be the event of a small average squared

Hellinger distance. Let G1, . . . , GN be a finite set of prior distributions (chosen to be a net of

P(R) in some distance), and let τ
(j)
ρn be the posterior mean vector corresponding to prior Gj with

nuisance parameter η0 and regularization ρn.

Then
1(An)

n
∥τ̂Ĝn,η0,ρn − τ

∗
ρn∥

2 ≤ 4

n

(
ζ21 + ζ22 + ζ23 + ζ24

)
where

ζ21 = ∥τ̂Ĝn,η0,ρn − τ
∗
ρn∥

2
1
(
An ∩BC

n

)
(F.6)

ζ22 =

(
∥τ̂Ĝn,η0,ρn − τ

∗
ρn∥ − max

j∈[N ]
∥τ (j)ρn − τ

∗
ρn∥
)2

+

1(An ∩Bn) (F.7)

ζ23 = max
j∈[N ]

(
∥τ (j)ρn − τ

∗
ρn∥ − E

[
∥τ (j)ρn − τ

∗
ρn∥
])2

+
(F.8)

ζ24 = max
j∈[N ]

(
E
[
∥τ (j)ρn − τ

∗
ρn∥
])2

(F.9)

The decomposition ζ1 through ζ4 is exactly analogous to Section C.3 in Soloff et al. (2021) and

to the proof of Theorem 1 in Jiang (2020). In particular, ζ1 is the gap on the “bad event” where

the average squared Hellinger distance is large, which is manageable since 1(An ∩ BC
n ) has small

probability by Corollary E.2. ζ2 is the distance from the posterior means at Ĝn to the closest

posterior mean generated from the net G1, . . . , GN ; ζ2 is small if we make the net very fine. ζ3

measures the distance between ∥τ (j)ρn − τ∗ρn∥ and its expectation; ζ3 can be controlled by (i) a large-

deviation inequality and (ii) controlling the metric entropy of the net (Proposition D.2). Lastly,

ζ4 measures the expected distance between τ
(j)
ρn and τ∗ρn ; it is small since Gj are fixed priors with

small average squared Hellinger distance.

However, our argument for ζ3 is slightly different and avoids an argument in Jiang and Zhang

(2009) which appears to not apply in the heteroskedastic setting. See Remark F.1.

The subsequent subsections control ζ1 through ζ4, and find that ζ4 ≲H (log n)3δ2n is the domi-

nating term. □

F.4.1. Controlling ζ1. First, we note that(
τ̂i,Ĝn,η0,ρn − τ

∗
ρn

)2
1(An ∩BC

n ) ≲H log(1/ρn)1(An ∩BC
n ) = log n1(An ∩BC

n )
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By Corollary E.2, P(An ∩BC
n ) ≤

(
log logn
log 2 + 9

)
1
n , and hence

1

n
Eζ21 ≲H

log n log logn

n
.

F.4.2. Controlling ζ2. Choose G1, . . . , GN to be a minimal ω-covering of
{
G : h(fG,·, fG0,·) ≤ δn

}
under the pseudometric

dMn,ρn(H1, H2) = max
i∈[n]

sup
z:|z|≤Mn

∣∣∣∣∣ ν2i f
′
H1,νi

(z)

fH1,νi(z) ∨
(
ρn
νi

) − ν2i f
′
H2,νi

(z)

fH2,νi(z) ∨
(
ρn
νi

)∣∣∣∣∣ (F.10)

where N ≤ N (ω,P(R), dMn,ρn). We note that (F.10) and (D.17) are different only by constant

factors. Therefore, Proposition D.2 implies that

logN

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dMn,ρn

)
≲H log(1/δ)2max

(
1,

Mn√
log(1/δ)

)
(F.11)

for all sufficiently small δ > 0.

Then

1

n
ζ22 ≤ 1(An ∩Bn) max

j∈[N ]
∥τ̂Ĝn,η0,ρn − τ

(j)
ρn ∥

2 (Triangle inequality : ∥a− b∥ − ∥b− c∥ ≤ ∥a− c∥)

= 1(An ∩Bn) max
j∈[N ]

n∑
i=1

1 (|Zi| ≤Mn)

 ν2i f
′
Ĝn,νi

(Zi)

fĜn,νi(Zi) ∨
(
ρn
νi

) − ν2i f
′
Gj ,νi

(Zi)

fGj ,νi(Zi) ∨
(
ρn
νi

)
2

≤ ω2

≤ δ2 log(1/δ)2

ρ2n
log(1/ρn). (Reparametrize ω = δ log(1/δ)ρ−1

n

√
log(1/ρn))

F.4.3. Controlling ζ3. We first observe that Vij ≡ |τ (j)i,ρn
− τ∗i,ρn | ≲H

√
log n, by Lemma D.10. Let

Vj = (V1j , . . . , Vnj)
′, we have that

ζ3 = max
j

(∥Vj∥ − E∥Vj∥)+

Let Kn = CH log n ≥ maxij |Vij |. Since Gj , G0 are both fixed, V1j , . . . , Vnj are mutually indepen-

dent.

Observe that

P (∥Vj∥ > E[∥Vj∥] + u) = P

(∥∥∥∥ VjKn

∥∥∥∥ ≥ E
∥∥∥∥ VjKn

∥∥∥∥+ u

Kn

)
≤ exp

(
− u2

2K2
n

)
.

by Lemma F.7. By a union bound,

P
(
ζ23 > x

)
≤ N exp

(
− x

2K2
n

)
.

Therefore

E[ζ23 ] =
∫ ∞

0
P(ζ23 > x) dx
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=

∫ ∞

0
min

(
1, N exp

(
− x

2K2
n

))
dx

= 2K2
n logN +

∫ ∞

2K2
n logN

N exp

(
− x

2K2
n

)
dx

≲H log n logN.

Now, if we take δ = ρn/n, then
1

n
E[ζ22 + ζ23 ] ≲H

(log n)3

n
.

Remark F.1. For the analogous term in the homoskedastic setting, Jiang and Zhang (2009) (and,

later on, Saha and Guntuboyina (2020)) observe that ∥τ (j)ρn −τ∗ρn∥ is a Lipschitz function of the noise

component Zi − τi. As a result, a Gaussian isoperimetric inequality (Theorem 5.6 in Boucheron et

al. (2013)) establishes that

P
(
∥τ (j)ρn − τ

∗
ρn∥ ≥ E

[
∥τ (j)ρn − τ

∗
ρn∥ | τ1, . . . , τn

]
+ x
)

is small, independently of n—a fact used in Proposition 4 of Jiang and Zhang (2009). Note that

the concentration of ∥τ (j)ρn − τ∗ρn∥ is towards its conditional mean E
[
∥τ (j)ρn − τ∗ρn∥ | τ1, . . . , τn

]
. In

the homoskedastic setting where νi = ν,

E
[
∥τ (j)ρn − τ

∗
ρn∥ | τ1, . . . , τn

]
= EG0,n

[
∥τ (j)ρn − τ

∗
ρn∥
]

(F.12)

where G0,n = 1
n

∑
i δτi is the empirical distribution of the τ ’s. However, (F.12) no longer holds

in the heteroskedastic setting, and to adapt this argument, we need to additionally control the

difference between E
[
∥τ (j)ρn − τ∗ρn∥ | τ1, . . . , τn

]
and E

[
∥τ (j)ρn − τ∗ρn∥

]
. The arguments of Jiang (2020)

(p.2289) and Soloff et al. (2021) (Section C.3.3, arXiv:2109.03466v1) appear to use the Gaussian

concentration of Lipschitz functions argument without the additional step.

Instead, we establish control of ζ3 by observing that entries of τ
(j)
ρn −τ∗ρn are bounded and applying

the convex Lipschitz concentration inequality. Since, like Soloff et al. (2021), we seek regret control

in terms of mean-squared error, this argument applies to their setting as well. Jiang (2020), on the

other hand, seeks regret control in terms of root-mean-squared error, and it is unclear if similar

fixes apply.

■

F.4.4. Controlling ζ4. Consider a change of variables where we let wi = z/νi and λi = τ/νi. Let

G(i) be the distribution of λi under G, where

G(i)(dλ) = G(dτ)

Then

fG,νi(z) =

∫
1

νi
φ (wi − λi)G(dτ) =

1

νi

∫
φ (wi − λi)G(i)(dλi) =

1

νi
fG(i),1(wi)

and

f ′G,νi(z) =
1

ν2i
f ′G(i),1

(wi).
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Hence,

E(τ (j)ρn − τ
∗
ρn)

2 = ν2i E

(
f ′Gji,1(wi)

fGji,1(wi) ∨ ρn
−

f ′G0i,1
(wi)

fG0i,1(wi) ∨ ρn

)2

≲H max
(
(log 1/ρn)

3, | log h(fGji,1, fG0i,1)|
)
h2(fGji,1, fG0i,1)

(Lemmas D.9 and F.8)

= max
(
(log 1/ρn)

3, | log h(fGj ,νi , fG0,νi)|
)
h2(fGj ,νi , fG0,νi)

(Hellinger distance is invariant to change-of-variables)

Let hi = h(fGj ,νi , fG0,νi).

Hence,

1

n
E[ζ24 ] ≲H

(log n)3

n

∑
i:| log hi|<(log 1/ρn)3

h2i +
1

n

∑
i:| log hi|>(log 1/ρn)3

| log hi|h2i

≤ (log n)3h
2
(fGj ,·, fG0,·) +

1

n

∑
i:| log hi|>(log 1/ρn)3

1

e
hi (x| log x| ≤ e−1)

Note that

| log hi| > (log 1/ρn)
3 =⇒ hi < exp

(
− log(1/ρn)

3
)
< ρ(log 1/ρn)

2

n ≲H ρ3n ≲H n−1.

(Assumption D.1)

Therefore the first term dominates, and

1

n
E[ζ24 ] ≲H (log n)3δ2n.

F.5. Controlling ξ4.

Lemma F.4. Under the assumptions of Theorem F.1, in the proof of Theorem F.1, Eξ4 ≲H
1
n .

Proof. Note that

E[(θ∗i,ρn − θ
∗
i )

2] =

∫ (
ν2i
f ′G0,νi

(z)

fG0,νi(z)

)2(
1−

fG0,νi

fG0,νi ∨
ρn
νi

)2

fG0,νi(z) dz

≤ E

(ν2i f ′G0,νi
(z)

fG0,νi(z)

)4
1/2

P [fG0,νi(Z) < ρn/νi]
1/2 (Cauchy–Schwarz)

≲H ρ1/3n Var(Z)1/6 (Lemma D.12)

≲H
1

n
.

Therefore, E[ξ4] ≲H
1
n . □

F.6. Auxiliary lemmas.

Lemma F.5. Let θ̂i,Ĝ,η̂ be the posterior mean at prior Ĝ and nuisance parameter estimate at η̂.

Let θ∗i = θ̂i,G0,η0 be the true posterior mean. Assume that Ĝ is supported within [−Mn,Mn] where

Mn = maxi |Ẑi(η̂) ∨ 1|. Let ∥η̂ − η∥∞ = max(∥m̂−m0∥∞, ∥ŝ− s0∥∞).

Then, suppose
115



(1) ∥η̂ − η∥∞ ≲H 1.

(2) Assumptions 2 and 3 holds.

(3) ŝ ≳H sℓn for some fixed sequence sℓn > 0.

Then ∣∣∣θ̂i,Ĝ,η̂ − θ∗i ∣∣∣ ≲H s−2
ℓn Zn.

Moreover, the assumptions are satisfied by Assumptions 1 to 4 with sℓn = s0ℓ ≍ 1.

Proof. Observe that ∣∣∣θ̂i,Ĝn,η̂ − θ̂i,G0,η0

∣∣∣ =
∣∣∣∣∣∣ 1ŝi

ν̂2i f
′
Ĝn,ν̂i

(Ẑi)

fĜn,ν̂i(Ẑi)
− 1

s0i

v2i f
′
G0νi

(Zi)

fG0,νi(Zi)

∣∣∣∣∣∣
≲H s−1

ℓnMn + Zn.

by the boundedness of Ĝn and Lemma D.18. Note that

|Ẑi(η̂)| =
∣∣∣∣s0iŝi Zi + m0i − m̂i

ŝi

∣∣∣∣ ≲H s−1
ℓn |Zi|.

Therefore, ∣∣∣θ̂i,Ĝn,η̂ − θ̂i,G0,η0

∣∣∣ ≲H s−2
ℓn Zn.

□

Lemma F.6. Let Zn = maxi |Zi| ∨ 1. Under Assumption 2, for t > 1

P(Zn > t) ≤ n exp (−CA0,α,νut
α) .

and

E[Zpn] ≲p,H (log n)p/α.

Moreover, if Mn = (CH + 1)(C−1
2,H log n)1/α as in (D.2), then for all sufficiently large choices of

CH, P(Zn > Mn) ≤ n−2.

Proof. The first claim is immediate under Lemma D.16 and a union bound.

The second claim follows from the observation that

E[max
i

(|Zi| ∨ 1)p] ≤

(∑
i

E[(|Zi| ∨ 1)pc]

)1/c

≤ n1/cCpH(pc)
p/α.

where the last inequality follows from simultaneous moment control. Choose c = log n with

n1/ logn = e to finish the proof.

For the “moreover” part, we have that

P(Zn > Mn) ≤ exp
(
log n− CA0,α,νu(CH + 1)αC−1

2,H log n
)

and it suffices to choose CH such that (CH + 1)α >
3C2,H

CA0,α,νu
so that P(Zn > Mn) ≤ e−2 logn =

n−2. □
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Lemma F.7. LetW = (W1, . . . ,Wn) be a vector containing independent entries, whereWi ∈ [0, 1].

Let ∥·∥ be the Euclidean norm. Then, for all t > 0

P [∥W∥ > E∥W∥+ t] ≤ e−t2/2.

Proof. We wish to use Theorem 6.10 of Boucheron et al. (2013), which is a dimension-free con-

centration inequality for convex Lipschitz functions of bounded random variables. To do so, we

observe that w 7→ ∥w∥ is Lipschitz with respect to ∥·∥, since

∥w + a∥ ≤ ∥w∥+ ∥a∥ ∥w∥ = ∥w + a− a∥ ≤ ∥w + a∥+ ∥a∥ =⇒ |∥w + a∥ − ∥w∥| ≤ ∥a∥.

Moreover, trivially ∥λw + (1 − λ)v∥ ≤ λ∥w∥ + (1 − λ)∥v∥ for λ ∈ [0, 1], and hence w 7→ ∥w∥ is

convex. Convexity implies separate convexity required in Theorem 6.10 of Boucheron et al. (2013).

This checks all conditions and the claim follows by applying Theorem 6.10 of Boucheron et al.

(2013). □

Lemma F.8. Let fH = fH,1. Then, for 0 < ρn ≤ 1√
2πe2

,∫ (
f ′H1

(x)

fH1(x) ∨ ρn
−

f ′H0
(x)

fH0(x) ∨ ρn

)2

fH0(x) dx

≲ max
(
(log 1/ρn)

3, | log h (fH1 , fH0) |
)
h2 (fH1 , fH0)

where we define the right-hand side to be zero if H1 = H0.

Proof. This claim is an intermediate step of Theorem 3 of Jiang and Zhang (2009). In (3.10) in

Jiang and Zhang (2009), the left-hand side of this claim is defined as r(fH1 , ρn). Their subsequent

calculation, which involves Lemma 1 of Jiang and Zhang (2009), proceeds to bound

r(fH1 , ρn) ≤ 4e2h2(fH1 , fH0)max
(
φ6
+(ρn), 2a

2
)
+ 2φ+(ρn)

√
2h(fH1 , fH0),

for a2 = max
(
φ2
+(ρn) + 1, | log h2 (fH1 , fH0) |

)
. Collecting the powers on h, log h and using φ+(ρn) ≲√

log(1/ρn) proves the claim. □

Appendix G. Estimating η0 by local linear regression

In this section, we verify that estimating η0 by local linear regression satisfies the conditions we

require for the nuisance estimators, when the true nuisance parameters belong to a Hölder class of

order p = 2: m0(σ), s0(σ) ∈ C2
A1

([σℓ, σu]).

In our empirical application, we estimate m0, s0 by nonparametrically regressing Yi on xi ≡
log10(σi).

78 Since log(·) is a smooth transformation on strictly positive compact sets, Hölder

smoothness conditions for (m0, s0) translate to the same conditions on (E[Y | x],Var(Y | x)−σ2(x)),
with potentially different constants. Moreover, scaling and translating xi linearly do not affect our

technical results. As a result, we assume, without essential loss of generality, xi ∈ [0, 1]. We abuse

and recycle notation to write m0(x) = E[Yi | xi = x], s0(x) = Var(θi | xi = x). We also note that

m0(x), s0(x) ∈ C2
A3

([0, 1]) for some A3 ≲H A1.

78Correspondingly, let σ(x) = 10x.
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We will consider the following local linear regression of Yi on xi. There are many steps imposed

for ease of theoretical analysis, but we conjecture are unnecessary in practice. In our empirical

exercises, omitting these steps do not affect performance.

(LLR-1) Fix some kernel K(·). Use the direct plug-in procedure of Calonico et al. (2019) to estimate

a bandwidth ĥn,m.

(LLR-2) For some Ch > 1, project ĥn,m to some interval [C−1
h n−1/5, Chn

−1/5] so as to enforce that

it converges at the optimal rate:79

ĥn,m ← (ĥn,m ∨ C−1
h n−1/5) ∧ Chn−1/5.

(LLR-3) Using ĥn,m, estimate m0 with the local linear regression estimator m̂raw under kernel K(·)
and bandwidth ĥn,m.

(LLR-4) Project the resulting estimator m̂ to the Hölder class C2
A3

([0, 1]):

m̂ ∈ argmin
m∈C2

A3
([0,1])

∥m− m̂raw∥∞.

We obtain m̂ through this procedure.

(LLR-5) Form estimated squared residuals R̂2
i = (Yi − m̂(xi))

2.

(LLR-6) Repeat (LLR-1) on data (R̂2
i , xi) to obtain a bandwidth ĥn,s.

(LLR-7) Repeat (LLR-2) to project ĥn,s.

(LLR-8) Using ĥn,s, estimate v(x) = E[R2
i | X = x] with the local linear regression estimator v̂

under kernel K(·).
(LLR-9) Since v̂ is a local linear regression estimator, it can be written as a linear smoother v̂(x) =∑n

i=1 ℓi(x; ĥn,s)R̂
2
i . Let an estimate of the effective sample size be

pn =
1

n

n∑
i=1

1∑n
j=1 ℓ

2
i (xj , ĥn,s)

. (G.1)

(LLR-10) Truncate the estimated conditional standard deviation:

ŝraw(x) =
√
v̂(x)− σ2(x) ∨

√
2

pn + 2
v̂(x). (G.2)

(LLR-11) Finally, project the resulting estimate to the Hölder class as in (LLR-4):

ŝ(x) ∈ argmin
s∈C2

A3
([0,1])

s2(·)≥ 2
pn+2

mini σ
2
i

∥s− ŝraw∥∞.

In practice, we expect the projection steps (LLR-3), (LLR-4), (LLR-7), and (LLR-11) to be un-

necessary, at least with exceedingly high probability, since (i) Calonico et al. (2019)’s procedure

is consistent for the optimal bandwidth, which contracts at n−1/5, and (ii) local linear regression

estimated functions are likely sufficiently smooth to obey Assumption 4(3). Hence, in our empirical

implementation, we do not enforce these steps and simply set m̂ = m̂raw, ŝ = ŝraw. Omitting the

projection steps does not appear to affect performance.

79We use the ← notation to reassign a variable so that we can reduce notation clutter.
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To ensure we always have a positive estimate of s0, we truncate at a particular point (G.2). This

truncation rule is a heuristic (and improper) application of results from the literature on estimating

non-centrality parameters. We digress and discuss the truncation rule in the next remark.

Remark G.1 (The truncation rule in (G.2)). The truncation rule in (G.2) is an ad hoc adjustment

without affecting asymptotic performance.80 It is based on a literature on the estimation of non-

central χ2 parameters (Kubokawa et al., 1993). Specifically, let Ui
i.i.d.∼ N (λi, 1) and let V =∑p

i=1 U
2
i be a noncentral χ2 random variable with p degrees of freedom and noncentrality parameter

λ =
∑p

i=1 λ
2
i . The UMVUE for λ is V − p, which is dominated by its positive part (V − p)+.

Kubokawa et al. (1993) derive a class of estimators of the form V −ϕ(V ; p) that dominate (V −p)+
in squared error risk. An estimator in this class is (V − p) ∨ 2

p+2V .81

This setting is loosely connected to ours. Suppose m0 is known, and we were using a Nadaraya–

Watson estimator with uniform kernel. Then, for a given evaluation point x0, we would be averaging

nearby R2
i ’s. Each Ri is conditionally Gaussian, Ri | (θi, σi) ∼ N (θi − m0(σi), σ

2
i ) with approx-

imately equal variance σ2i ≈ σ(x0)
2. If there happens to be p0 R

2
i ’s that we are averaging, the

Nadaraya–Watson estimator is of the form

v̂(x0) =
σ(x0)

2

p0

p∑
i=1

(
Ri

σ(x0)

)2

Conditional on σ2i , θi, the quantity
∑p

i=1

(
Ri

σ(x0)

)2
is (approximately) noncentral χ2 with p degrees

of freedom and noncentrality parameter

λ =

p0∑
i=1

(
θi −m0(xi)

σ(x0)

)2

Therefore, correspondingly, applying the truncation rule from Kubokawa et al. (1993), an estimator

for the sample variance of θi,
1
p0

∑p0
i=1(θi −m0(xi))

2, is(
v̂(x0)− σ2(x0)

)
∨ 2

p0 + 2
v̂(x0).

Here, we apply this truncation rule (improperly) to the case where v̂(x0) is a weighted average

of the squared residuals, with potentially negative weights due to higher-order polynomials (equiv.

higher-order kernels). To do so, we would need to plug in an analogue of p0. We note that when

independent random variables Vi have unit variance, the weighted average has variance equal to

the squared length of the weights

Var

(∑
i

ℓi(x)Vi

)
=

n∑
i=1

ℓ2i (x).

80Indeed, since we already assumed that the true conditional variance s0(x) > sℓ, we can truncate by any
vanishing sequence. Given any vanishing sequence, eventually it is lower than sℓ, and eventually |ŝ− s0| is
small enough for the truncation to not bind. This is, in some sense, silly, since finite sample performance
is likely affected if we truncate by, say, 1

log logn , reflected in a large constant in the corresponding rate

expression. Our following argument assumes that the truncation of order O(n−4/5). Doing so is likely to
achieve a smaller constant in the rate expression, despite not mattering asymptotically.
81Though, since neither (V − p)+ and (V − p) ∨ 2

p+2V is differentiable in V , they are not admissible.
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Since a simple average has variance equal to 1/n, we can take
(∑n

i=1 ℓ
2
i (x)

)−1
to be an effective

sample size. Our rule simply takes the average effective sample size over evaluation points in (G.1)

and use it as a candidate for p. ■

The goal in this section is to control the following probability as a function of t > 0

P
(
∥η̂ − η0∥∞ > CHtn

−2/5(log n)β
)

for some constants β,CH to be chosen. Since we treat x1, . . . , xn as fixed (fixed design), we shall

do so placing some assumptions on sequences of the design points x1:n as a function of n. These

assumptions are mild and satisfied when the design points are equally spaced. They are also satisfied

with high probability when the design points are drawn from a well-behaved density f(·).
Before doing so, we introduce some notation on the local linear regression estimator. Note that,

by translating and scaling if necessary, it is without essential loss of generality to assume xi take

values in [0, 1]. Let hn denote some (possibly data-driven) choice of bandwidth. Let u(x) = [1, x]′

and let Bnx = Bnx(hn) =
1
nhn

∑n
i=1K

(
xi−x
hn

)
u
(
xi−x
hn

)
u
(
xi−x
hn

)′
. Then, it is easy to see that the

local linear regression weights can be written in terms of Bnx and u(·):

sn ≡ nhn ℓi(x) = ℓi(x, hn) ≡
1

sn
u(0)′B−1

nx u

(
xi − x
hn

)
K

(
xi − x
hn

)
.

We shall maintain the following assumptions on the design points. The following assumptions

introduce constants (Ch, n0, λ0, a0,K0,K(·), c, C, CK , VK) which we shall take as primitives like

those in H. The symbols ≲,≳,≍ are relative to these constants, and we will not keep track of

exact dependencies through subscripts.

Assumption G.1. For some constant Ch > 1, the data-driven bandwidth hn is almost surely

contained in the set Hn ≡ [C−1
h n−1/5 ∨ 1

2n , Chn
−1/5].

Assumption G.1 is automatically satisfied by the projection steps (LLR-3) and (LLR-7).

Assumption G.2. The sequence of design points (xi : i = 1, . . . , n) satisfy:

(1) There exists a real number λ0 > 0 and integer n0 > 0 such that, for all n ≥ n0, any x ∈ [0, 1],

and any h̃ ∈ [C−1
h n−1/5 ∨ 1

2n , Chn
−1/5], the smallest eigenvalue λmin(Bnx(h̃)) ≥ λ0.

(2) There exists a real number a0 > 0 such that for any interval I ⊂ [0, 1] and all n ≥ 1,

1

n

n∑
i=1

1(xi ∈ I) ≤ a0
(
λ(I) ∨ 1

n

)
where λ(I) is the Lebesgue measure of I.

(3) The kernel K is supported on [−1, 1] and uniformly bounded by some positive constant K0.

(4) There exists c, C > 0 such that for all n ≥ n0, the choice of pn in (G.1) satisfies cn4/5 ≤
pn(h̃) ≤ Cn4/5 for all h̃ ∈ [C−1

h n−1/5 ∨ 1
2n , Chn

−1/5].

Assumption G.2(1–3) is nearly the same as Assumption (LP) in Tsybakov (2008). The only

difference is that Assumption G.2(1) requires the lower bound λ0 to hold uniformly over a range

of bandwidth choices, relative to LP-1 in Tsybakov (2008), which requires λ0 to hold for some

deterministic sequence hn. This is a mild strengthening of LP-1: Note that if xi are drawn from a
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Lipschitz-continuous, everywhere-positive density f(x), then for h→ 0, nh→∞,

Bnx(h) ≈
∫
K(t)u(t)u(t)′f(x) dt ⪰

∫
K(t)u(t)u(t)′ dt

(
min
x∈[0,1]

f(x)

)
where ≻ denotes the positive-definite matrix order. Thus the minimum eigenvalue of Bnx(h) should

be positive irrespective of x and h. See, also, Lemma 1.5 in Tsybakov (2008).

Assumption G.2(2)–(3) are the same as (LP-2)–(LP-3) in Tsybakov (2008). (2) expects that the

design points are sufficiently spread out, and (3) is satisfied by, say, the Epanechnikov kernel.

Lastly, (4) expects that the average effective sample size is about sn = nhn ≍ n−4/5. Again,

heuristically, if xi are drawn from a Lipschitz and everywhere-positive density f(x), then

n∑
i=1

ℓ2i (xj) ≈ n
1

s2n
hn ·

∫
(u(0)′B−1

n,xju(t)K(t))2f(xj) dt =
1

sn

∫
(u(0)′B−1

n,xju(t)K(t))2f(xj) dt.

Hence the mean reciprocal pn is of order sn. We also remark that Assumption G.2 is satisfied by

regular design points xi = i/n.

Assumption G.3. The kernel satisfies the following VC subgraph-type conditions. Let

Fk =

{
y 7→

(
y − x
h

)k−1

K

(
y − x
h

)
: x ∈ [0, 1], h ∈ Hn

}
for k = 1, 2. For any finitely supported measure Q,

N(ϵ,Fk, L2(Q)) ≤ CK(1/ϵ)VK

for CK , VK that do not depend on Q.

Assumption G.3 is satisfied for a wide range of kernels, e.g. the Epanechnikov kernel. By

Lemma 7.22 in Sen (2018), reproduced as Lemma G.2 below, so long as the function t 7→ tk−1K(t)

is bounded (assumed in Assumption G.2(3)) and of bounded variation (satisfied by any absolutely

continuous kernel function), the covering number conditions hold by exploiting the finite VC di-

mension of subgraphs of these functions.

We now state and prove the main results in this section. The key to these arguments is Proposi-

tion G.1 on the bias and variance of local linear regression estimators. Proposition G.1 is uniform

in both the evaluation point x and the bandwidth h, as long as the latter converges at the optimal

rate.

Theorem G.1. Suppose the conditional distribution θi | σi and the design points σ1:n satisfy

Assumptions 2, 3, and G.2. Moreover, suppose m0, s0 satisfies Assumption 4(1) with p = 2.

Suppose the kernel K(·) satisfies Assumption G.3. Let m̂, ŝ denote the estimators computed by

(LLR-1) through (LLR-11). Then:

(1) P
(
m̂, ŝ ∈ C2

A3
([0, 1])

)
= 1

(2) For some C depending only on the parameters in the assumptions, for all n ≥ 7 and t > 1,

P
(
max (∥m̂−m0∥∞, ∥ŝ− s0∥) ≥ Ctn−

2
5 (log n)1+2/α

)
≤ 1

n10t2
. (G.3)
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(3) For some c depending only on the parameters in the assumptions, for all n ≥ 7,

P
( c
n
≤ ŝ
)
= 1.

Proof. The first claim is true automatically by the projection to the Hölder space. The third claim

is true automatically by (LLR-11), since pn ≍ n4/5 and n−4/5 ≳ n−1.

Now, we show the second claim. Since we assume that m0, s0 lies in the Hölder space with

s0 > s0ℓ, then projection to the Hölder space (and truncation by 2/(2 + pn)mini σ
2
i ) worsens

performance by at most a factor of two for all sufficiently large n. The projection to the Hölder

space ensures that ∥η̂ − η0∥∞ is bounded a.s. for all n, so that we can remove “for all sufficiently

large n” at the cost of enlarging a constant so as to accommodate the first finitely many values of

n. As a result, it suffices to show that

P
(
max (∥m̂raw −m0∥∞, ∥ŝraw − s0∥∞) > Ctn−2/5(log n)β

)
≤ 1

n10t2

for some C and β = 1 + 2/α.

Let Yi = m0(xi)+ ξi where ξi = θi−m0(xi)+ (Yi− θi). Note that we have simultaneous moment

control for ξi:

max
i

E[|ξi|p]1/p ≲ p1/α

where α is the constant in Assumption 2. Therefore, we can apply Proposition G.1 to obtain

P
(
∥m̂raw −m0∥∞ > Ctn−2/5(log n)1+1/α

)
≤ 1

2n10t2

for the local linear regression estimator m̂raw.

The same argument to control ∥ŝraw − s0∥∞ is more involved. First observe that

|ŝ2raw − s20| = |ŝraw − s0|(ŝraw + s0) ≥ s0ℓ|ŝraw − s0|.

Also observe that for a positive f0,

|f̂ ∨ g − f0| ≤ |f̂ − f0| ∨ |g|.

As a result, it suffices to control the upper bound in

∥ŝraw − s0∥∞ ≤
1

s0ℓ

(
∥v̂ − v0∥∞ ∨

(
2

2 + pn
v̂

))
(v0(x) ≡ Var(Yi | xi = x))

≲ ∥v̂ − v0∥∞ ∨
∥v̂ − v0∥∞ + ∥v0∥∞

2 + n4/5
(Assumption G.2)

≲ ∥v̂ − v0∥∞ (G.4)

Now, observe that R̂2
i = R2

i + (m0 − m̂)2 − 2(m0 − m̂)ξi. Hence,

|v̂(x)− v0(x)| ≤

∣∣∣∣∣
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∣∣∣∣∣+
{
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)} n∑

i=1

|ℓi(x, ĥn,s)|

≤

∣∣∣∣∣
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∣∣∣∣∣+ C

{
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)}

.

(G.5)
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By Lemma 1.3 in Tsybakov (2008), the term
∑n

i=1 |ℓi(x, ĥn,s)| is bounded uniformly in h and x by

a constant. Note that

ξ̃i ≡ R2
i − v0(xi)

has simultaneous moment control with a different parameter (α̃ = α/2):

max
i

(E|ξ̃i|p)1/p ≲ p2/α.

Thus, applying Proposition G.1 and taking care to plug in ξ̃, α̃, we can bound the first term in

(G.5)

P

(∥∥∥∥∥
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∥∥∥∥∥
∞

≥ Ctn−2/5(log n)1+2/α

)
≤ 1

4n10t2
.

Note that by an application of Lemma F.6, for any a, b > 0, we have that

P

(
max
i
|ξi| > C(a, b)t(log n)1/α

)
< an−be−t

2

As a result, the second term in (G.5) admits

P

(
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)
> Ctn−2/5(log n)1+2/α

)
≤ 1

4n10t2

Finally, putting these bounds together, we have that

P
(
∥v̂ − v0∥∞ > Ctn−2/5(log n)1+2/α

)
≤ 1

2n10t2
,

where the same bound (with a different constant) holds for ŝraw by (G.4).

Combining the bounds for m̂ and ŝ, we obtain (G.3). This concludes the proof. □

Theorem G.2. Under the assumptions of Theorem G.1, let η̂ = (m̂, ŝ) denote estimators computed

by (LLR-1) through (LLR-11). Then,

E
[
MSERegretn(Ĝn, η̂)

]
≲ n−2/5(log n)1+2/α.

Proof. Recall the event An in (C.5) for ∆n = C1n
−2/5(log n)β andMn = C2(log n)

1/α, where C1, C2

are to be chosen and β = 1 + 2/α. Define Ãn = An ∩ {s0ℓ/2 ≤ ŝ ≤ 2s0u}. Decompose

E
[
MSERegretn(Ĝn, η̂)

]
= E

[
MSERegretn(Ĝn, η̂)1(Ãn)

]
+ E

[
MSERegretn(Ĝn, η̂)1(Ã

C
n )
]
.

Note that, for all sufficiently large n > N , such that N depends only on C1, β, sℓ, su, the event

An implies {s0ℓ/2 ≤ ŝ ≤ 2s0u} and hence An = Ãn. Thus, by Theorem G.1, for all sufficiently large

n, on the event An, statements analogous to Assumption 4(2–4) hold for the estimator η̂. As a

result, we may apply Theorem F.1, mutatis mutandis, to obtain that

E
[
MSERegretn(Ĝn, η̂)1(Ãn)

]
≲ n−4/5(log n)

2+α
α

+3+2β

for all sufficiently large choices of C1, C2.

To control E
[
MSERegretn(Ĝn, η̂)1(Ã

C
n )
]
, we observe that under Lemma F.5 and Theorem G.1(1

and 3), we have that almost surely,

MSERegretn(Ĝn, η̂) ≲ n4Z
2
n.

123



Hence, by Cauchy–Schwarz as in Lemma F.1,

E
[
MSERegretn(Ĝn, η̂)1(Ã

C
n )
]
≲ P(ÃC

n )
1/2n4(log n)2/α,

where we apply Lemma F.6 to bound E[Z4
n].

For all sufficiently large n > N ,

P(AC
n ) = P(ÃC

n ) ≤ P(Zn > Mn) + P(∥η̂ − η0∥∞ > ∆n).

Sufficiently large C1, C2 can be chosen such that the right-hand side is bounded by n−10. To wit,

we can apply Theorem G.1 to bound ∥η̂− η0∥∞. We can apply Lemma F.6 to bound P(Zn > Mn).

As a result, we would obtain

E
[
MSERegretn(Ĝn, η̂)1(Ã

C
n )
]
≲

1

n
(log n)2/α

for all sufficiently large n.

Since E[MSERegretn(Ĝn, η̂)] ≲ n4(log n)2/α is finite for all n, at the cost of enlarging the implicit

constant, we have the result of the theorem holding for all n. □

G.1. Auxiliary lemmas.

Proposition G.1. Consider the local linear regression of data Yi = f0(xi)+ξi on the design points

xi, for i = 1, . . . , n. Suppose f0 belongs to a Hölder class of order two: f0 ∈ C2
L([0, 1]) for some

L > 0. Suppose that the design points satisfy Assumption G.2 and the (possibly data-driven)

bandwidths hn satisfy Assumption G.1. Assume the kernel additionally satisfies Assumption G.3.

Assume that the residuals ξi are mean zero, and there exists a constant Aξ > 0, α > 0 such that

max
i=1,...,n

(E[|ξi|p])1/p ≤ Aξp1/α

for all p ≥ 2. Let ℓi(x, h) be the weights corresponding to local linear regression, and define the bias

part b(x, hn) = (
∑n

i=1 ℓi(x, hn)f0(xi)) − f0(xi) and the stochastic part v(x, h) =
∑n

i=1 ℓi(x, h)ξi.

Recall that Hn is the interval for hn in Assumption G.1. Then:

(1) The bias term is of order n−2/5:

sup
x∈[0,1],h∈Hn

|b(x, h)| ≲ n−2/5.

(2) The variance term admits the following large-deviation inequality: For any a, b > 0, there

exists a constant C(a, b), which may additionally depend on the constants in the assump-

tions, such that for all n > 1 and t ≥ 1

P

(
sup

x∈[0,1],h∈Hn
|v(x, h)| > C(a, b) · t · (log n)1+1/αn−2/5

)
≤ an−b 1

t2
.

(3) As a result, let f̂(·) = b(·, hn) + v(·, hn) + f0(·), we have that for any a, b > 0, there exists

a constant C(a, b) such that for all n > 1 and t ≥ 1,

P
(
∥f̂ − f0∥∞ > C(a, b)t(log n)1+1/αn−2/5

)
≤ an−b 1

t2
.
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Proof. Note that (3) follows immediately from (1) and (2) since the bounds in (1) and (2) are

uniform over all h ∈ Hn. We now verify (1) and (2).

(1) This claim follows immediately from the bound for b(x0) in Proposition 1.13 in Tsybakov

(2008). The argument in Tsybakov (2008) shows that

sup
x∈[0,1]

|b(x, hn)| ≤ Ch2n,

which is uniformly bounded by Cn−2/5 by Assumption G.1. Hence

sup
x∈[0,1],h∈Hn

|b(x, h)| ≲ n−2/5.

(2) Let M be a truncation point to be defined. Let

ξi,<M = ξi1(|ξi| ≤M)− E[ξi1(|ξi| ≤M)] ξi,>M = ξi1(|ξi| > M)− E[ξi1(|ξi| > M)]

be truncated and demeaned variables. Note that

ξi = ξi,<M + ξi,>M .

First, let V1n(x, hn) =
∑n

i=1 ℓi(x, hn)ξi,>M . Note that by Cauchy–Schwarz, uniformly over x, hn,

V 2
1n ≤

n∑
i=1

ℓi(x, hn)
2

n∑
i=1

ξ2i,>M

≲
1

h2n

1

n

n∑
i=1

ξ2i,>M (Lemma 1.3(i) in Tsybakov (2008) shows that |ℓi(x, hn)| ≤ C
nhn

)

≲ n2/5
1

n

n∑
i=1

ξ2i,>M

Now, for some C related to the implicit constant in the above display,

P

(
sup

x∈[0,1],hn∈Hn
V 2
1n(x, hn) > Ct2

)
≤ P

(
1

n

n∑
i=1

ξ2i,>M > t2n−2/5

)
≤

maxi Eξ2i,>M
t2

n2/5.

(Markov’s inequality)

We note that by Cauchy–Schwarz,

E[ξ2i,>M ] ≤
√

E[ξ4i ]
√
P(|ξi| > M) ≲

√
P(|ξi| > M) ≤ exp (−cMα) (Lemma D.16)

where c depends on Aξ. Hence, for a potentially different constant C,

P

(
sup

x∈[0,1],hn∈Hn
|V1n(x, hn)| > Ct

)
≤ exp

(
−cMα − 2 log t+

2

5
log n

)
. (G.6)

Next, consider the process

V2n(x, hn) =

n∑
i=1

ℓi(x, hn)ξi,<M
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=
1

nhn

n∑
i=1

u(0)′B−1
nx

[
1

0

]
︸ ︷︷ ︸

A1(x,hn)

K

(
xi − x
hn

)
ξi,<M

+
1

nhn

n∑
i=1

u(0)′B−1
nx

[
0

1

]
︸ ︷︷ ︸

A2(x,hn)

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M

≡ A1(x, hn)

hn

1

n

n∑
i=1

K

(
xi − x
hn

)
ξi,<M +

A2(x, hn)

hn

1

n

n∑
i=1

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M .

Note that, by Assumption G.2(1), uniformly over x ∈ [0, 1] and hn ∈ Hn,

|Ak(x, hn)| ≤ ∥u(0)′B−1
nx ∥ ≤

1

λ0
.

By triangle inequality,

V2n(x, hn) ≲
1

hn

∣∣∣∣∣ 1n
n∑
i=1

K

(
xi − x
hn

)
ξi,<M

∣∣∣∣∣+ 1

hn

∣∣∣∣∣ 1n
n∑
i=1

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M

∣∣∣∣∣
≡ 1√

nhn
V2n,1(x, hn) +

1√
nhn

V2n,2(x, hn).

We will aim to control the ψ2-norm of the left-hand side. Note that it suffices to control the ψ2-norm

of both terms on the right-hand side:∥∥∥∥∥ sup
x∈[0,1],hn∈Hn

|V2n(x, hn)|

∥∥∥∥∥
ψ2

≲
1√
nhn

max
k=1,2

∥∥∥∥∥ sup
x∈[0,1],hn∈Hn

|V2n,k(x, hn)|

∥∥∥∥∥
ψ2

 .

The above display follows from replacing the sum with two times the maximum and Lemma 2.2.2

in van der Vaart and Wellner (1996).

We will do so by applying Lemma G.1. The analogue of f in Lemma G.1 is

t 7→ f(t;x, h) =

(
t− x
h

)k−1

K

(
t− x
h

)
for V2n,k, k = 1, 2. Naturally, the analogues of F is

Fk = {t 7→ f(t;x, h) : x ∈ [0, 1], h ∈ Hn} ∪ {t 7→ 0}.

Note that

f(t;x, h) ≤ 1(|t− x| ≤ h)K0

and thus the diameter of Fk is at most

sup
A⊂[0,1]:λ(A)≤4Chn−1/5

K0

√√√√ 1

n

n∑
i=1

1(xi ∈ A) ≲ n−1/10
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by Assumption G.2(2). Therefore, by Assumption G.3, we apply Lemma G.1 and obtain that for

k = 1, 2 ∥∥∥∥∥ sup
x∈[0,1],h∈Hn

|V2n,k(x, h)|

∥∥∥∥∥
ψ2

≲Mn−1/10
√
log n.

Finally, this argument shows that∥∥∥∥∥ sup
x∈[0,1],h∈Hn

|V2n(x, h)|

∥∥∥∥∥
ψ2

≲
1

√
nhnn1/10

M
√
log n ≲ n−2/5M

√
log n. (G.7)

Putting things together, we can choose M = (cm log n)1/α for sufficiently large cm so that by

(G.6),

P

(
sup

x∈[0,1],h∈Hn
|V1n(x, h)| > Ctn−2/5

)
≤ a

2
n−b

1

t2
,

where cm depends on a, b. The bound (G.7) in turns shows that

P

(
sup

x∈[0,1],hn∈Hn
|V2n(x, hn)| > C(a, b)t(log n)

2+α
2α n−2/5

)
≤ 2e−t

2

Taking t =
√
b log n+ log(a/4)s gives

P

(
sup

x∈[0,1],hn∈Hn
|V2n(x, hn)| > C(a, b)s(log n)1+1/αn−2/5e−s

2

)
≤ a

2
n−be−s

2
<
a

2
n−b

1

s2

for all s > 1.

Therefore, combining the two bounds,

P

(
sup

x∈[0,1],hn∈Hn
|v(x, hx)| > C(a, b)t(log n)1+1/αn−2/5

)
≤ an−b 1

t2
.

□

Lemma G.1. Suppose ξi are bounded by M ≥ 1 and mean zero. Consider the process

Vn(f) =
1√
n

n∑
i=1

f(xi)ξi

over a class of real-valued functions f ∈ F and evaluation points x1, . . . , xn ∈ [0, 1]. Define the

seminorm ∥·∥n relative to x1, . . . , xn by

∥f∥n =

√√√√ 1

n

n∑
i=1

f(xi)2.

Suppose 0 ∈ F and F has polynomial covering numbers:

N(ϵ,F , ∥·∥n) ≤ C(1/ϵ)V ϵ ∈ [0, 1]
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where C, V > 0 depend solely on F . Then∥∥∥∥∥supf∈F
|Vn(f)|

∥∥∥∥∥
ψ2

≲Mdiam(F)
√
log(1/diam(F)),

where diam(F) = supf1,f2∈F∥f1 − f2∥n.

Proof. The process Vn(f) has subgaussian increments with respect to ∥·∥n:

∥Vn(f1)− Vn(f2)∥ψ2 ≲M∥f1 − f2∥n.

Hence, by Dudley’s chaining argument (e.g. Corollary 2.2.5 in van der Vaart and Wellner (1996)),

for some fixed f0 ∈ F ,∥∥∥∥∥supf Vn(f)

∥∥∥∥∥
ψ2

≤ ∥Vn(f0)∥ψ2 + CM

∫ diam(F)

0

√
logN(δ,F , ∥·∥n) dδ.

Note that (i) the metric entropy integral is bounded by Cdiam(F)
√

log(1/diam(F)), and (ii) for a

fixed f0, ∥Vn(f0)∥ψ2 ≲ ∥f0∥nM ≤ diam(F)M since 0 ∈ F . Therefore,∥∥∥∥∥supf Vn(f)

∥∥∥∥∥
ψ2

≲Mdiam(F)
√

log(1/diam(F)).

□

Lemma G.2 (Lemma 7.22(ii) in Sen (2018)). Let q(·) be a real-valued function of bounded vari-

ation on R. The covering number of F = {x 7→ q(ax+ b) : (a, b) ∈ R} satisfies

N(ϵ,F , L2(Q)) ≤ K1ϵ
−V1

for some K1 and V1 and for a constant envelope.
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