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ABSTRACT. Empirical Bayes methods usually maintain a prior independence assumption:
The unknown parameters of interest are independent from the known standard errors of the
estimates. This assumption is often theoretically questionable and empirically rejected.
This paper instead models the conditional distribution of the parameter given the standard
errors as a flexibly parametrized family of distributions, leading to a family of methods
that we call CLOSE. This paper establishes that (i) CLOSE is rate-optimal for squared error
Bayes regret, (ii) squared error regret control is sufficient for an important class of eco-
nomic decision problems, and (iii) CLOSE is worst-case robust when our assumption on the
conditional distribution is misspecified. Empirically, using CLOSE leads to sizable gains
for selecting high-mobility Census tracts. Census tracts selected by CLOSE are substan-
tially more mobile on average than those selected by the standard shrinkage method.

JEL CODES. C10, C11, C44
KEYWORDS. Empirical Bayes, g-modeling, regret, heteroskedasticity, nonparametric max-
imum likelihood, Opportunity Atlas, Creating Moves to Opportunity

Date: April 8, 2024. This paper is based on the second chapter of my Ph.D. thesis. It is also previously
titled “Gaussian Heteroskedastic Empirical Bayes without Independence.” I thank my advisors, Isaiah
Andrews, Elie Tamer, Jesse Shapiro, and Edward Glaeser, for their guidance and generous support. I
thank Harvey Barnhard, Raj Chetty, Dominic Coey, Aureo de Paula, Bryan Graham, Jiaying Gu, Aditya
Guntuboyina, Nathaniel Hendren, Keisuke Hirano, Peter Hull, Kenneth Hung, Lawrence Katz, Patrick
Kline, Scott Duke Kominers, Soonwoo Kwon, Lihua Lei, Andrew Lo, Michael Luca, Anna Mikusheva, Joris
Pinkse, Mikkel Plagborg-Møller, Azeem Shaikh, Suproteem Sarkar, Ashesh Rambachan, David Ritzwoller,
Brad Ross, Jonathan Roth, Neil Shephard, Rahul Singh, Asher Spector, Harald Uhlig, Winnie van Dijk,
Davide Viviano, Christopher Walker, Chris Walters, and workshop and seminar participants at Brown,
Harvard, Penn State, Philadelphia Fed, Rutgers, Princeton, Stanford, the University of Chicago, Berkeley,
UCLA, and Yale. I am responsible for any and all errors. An R implementation of CLOSE is found at
https://github.com/jiafengkevinchen/close.

1

mailto:jiafengchen@g.harvard.edu
https://github.com/jiafengkevinchen/close


1. Introduction

Applied economists often use empirical Bayes methods to shrink noisy parameter esti-
mates, in hopes of accounting for the imprecision in the estimates and improving subse-
quent decisions.1 Commonly used empirical Bayes methods assume prior independence—
that the known precisions of the noisy estimates do not predict the underlying unknown
parameters. However, prior independence is economically questionable and empirically
rejected in many contexts; inappropriately imposing it can harm empirical Bayes decisions,
possibly even making them underperform decisions using shrinkage. Motivated by these
concerns, this paper introduces empirical Bayes methods that relax prior independence.

To be concrete, our primary empirical example (Bergman et al., 2024) performs shrink-
age on estimates of economic mobility of low-income children2 published in the Opportu-
nity Atlas (Chetty et al., 2020). Here, prior independence assumes that the standard errors
of these noisy mobility estimates do not predict true economic mobility. However, more
upwardly mobile Census tracts tend to have fewer low-income children and hence nois-
ier estimates of mobility. Consequently, the standard errors of mobility estimates and true
mobility are positively correlated, violating prior independence.

Bergman et al. (2024) select high-mobility Census tracts by choosing those with high
shrinkage estimates. Empirical Bayes methods under prior independence shrink all esti-
mates to their unconditional mean, and they shrink noisier estimates more severely. How-
ever, since Census tracts with high standard errors also tend to be more mobile, their condi-
tional mean given high standard errors is greater than the unconditional mean. As a result,
conventional methods erroneously shrink these noisier estimates to a target that is too low.
This can harm subsequent decisions: For a few measures of economic mobility where prior
1Empirical Bayes methods are applicable whenever many parameters for heterogeneous populations are esti-
mated in tandem. For instance, value-added modeling, where the parameters are latent qualities for different
service providers (e.g. teachers, schools, colleges, insurance providers, etc.), is a common thread in several
literatures (Angrist et al., 2017; Mountjoy and Hickman, 2021; Chandra et al., 2016; Doyle et al., 2017;
Hull, 2018; Einav et al., 2022; Abaluck et al., 2021; Dimick et al., 2010). Our application (Bergman et al.,
2024) is in a literature on place-based effects, where the unknown parameters are latent features of places
(Chyn and Katz, 2021; Finkelstein et al., 2021; Chetty et al., 2020; Chetty and Hendren, 2018; Diamond
and Moretti, 2021; Baum-Snow and Han, 2019; Aloni and Avivi, 2023). Empirical Bayes methods are also
applicable in studies of discrimination (Kline et al., 2022; Kline et al., 2023; Rambachan, 2021; Egan et al.,
2022; Arnold et al., 2022; Montiel Olea et al., 2021), meta-analysis (Azevedo et al., 2020; Meager, 2022;
Andrews and Kasy, 2019; Elliott et al., 2022; Wernerfelt et al., 2022; DellaVigna and Linos, 2022; Abadie
et al., 2023), and correlated random effects in panel data (Chamberlain, 1984; Arellano and Bonhomme,
2009; Bonhomme et al., 2020; Bonhomme and Manresa, 2015; Liu et al., 2020; Giacomini et al., 2023).
2Throughout this paper, measures of economic mobility for a place are defined as certain average adult
outcomes of children from low-income households growing up in the place (Chetty et al., 2020). One
example is the probability that a Black person have incomes in the top 20 percentiles, whose parents have
household incomes at the 25th percentile. See Section 4 for details.
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independence is severely violated, we find that screening on conventional shrinkage esti-
mates selects less economically mobile tracts, on average, than screening on the unshrunk
estimates.3 In contrast, screening on shrinkage estimates computed by our method selects
substantially more mobile tracts.

To describe our method, let us formalize the setup and introduce empirical Bayes meth-
ods in more detail. For i = 1, . . . , n, suppose we observe (Yi, σi). Yi are noisy estimates
for parameters θi, and σi are the corresponding standard errors for the point estimates Yi. In
our empirical application, (Yi, σi) are published in the Opportunity Atlas for each Census
tract i, and are designed to measure true economic mobility θi. Motivated by the central
limit theorem applied to the underlying micro-data—which is unavailable to the public in
the case of the Opportunity Atlas—we assume that Yi is approximately Gaussian:

Yi | θi, σi ∼ N (θi, σ
2
i ) i = 1, . . . , n. (1.1)

Under this setup, empirical Bayes methods are rationalized as approximations of un-
known optimal decisions. If we knew the distribution of (θi, σi), then we can do no better
than oracle Bayes decisions, which use the distribution of (θi, σi) as a prior and optimize
actions with respect to the corresponding posterior distribution θi | σi, Yi. Empirical Bayes
methods emulate such optimal decisions by estimating the oracle’s prior—the distribution
of (θi, σi). As an example, shrinkage estimation, discussed so far, corresponds to using the
(estimated) posterior means of θi as a decision rule.

Prior independence—the assumption that θi y σi—simplifies the problem of estimat-
ing the oracle’s prior. However, empirical Bayes methods based on this assumption can
have poor performance when it fails to hold. In Section 2, we relax prior independence
by modeling the prior distribution θi | σi flexibly. We model θi | σi as a conditional
location-scale family, controlled by σi-dependent location and scale hyperparameters and a
σi-independent shape hyperparameter. Under this assumption, different values of the stan-
dard errors σi translate, compress, or dilate the distribution of the parameters θi | σi, but
the underlying shape of θi | σi does not vary. This model subsumes prior independence as
the special case where the location and scale parameters are constant functions of σi.

This conditional location-scale assumption leads naturally to a family of empirical Bayes
methods that we call CLOSE. Since the unknown prior distribution θi | σi is fully described
by its location, scale, and shape hyperparameters, CLOSE simply estimates these parameters
3Fortunately, for the measure of economic mobility (mean income rank pooling over all demographic groups
whose parents are at the 25th percentile of household income) used in Bergman et al. (2024), the violation of
prior independence is sufficiently mild, so that screening on these empirical Bayes shrinkage estimates still
outperforms screening on the raw estimates.
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flexibly and plugs the estimated parameters into downstream decision rules. Among dif-
ferent estimation strategies for the hyperparameters, our preferred specification of CLOSE

uses nonparametric maximum likelihood (NPMLE, Kiefer and Wolfowitz, 1956; Koenker
and Mizera, 2014) to estimate the unknown shape of the prior distribution θi | σi.

Section 3 provides three statistical guarantees for our preferred method, CLOSE-NPMLE.
First and foremost, CLOSE-NPMLE emulates the oracle as well as possible, in terms of
squared error loss. Specifically, Theorems 1 and 2 establish that CLOSE-NPMLE is mini-
max rate-optimal, up to logarithmic factors, for Bayes regret in squared error, a standard
performance metric (Jiang and Zhang, 2009). Bayes regret is the performance gap be-
tween CLOSE-NPMLE and oracle Bayes decisions made with knowledge of the distribution
of (θi, σi). From a technical perspective, these results extend existing regret guarantees for
NPMLE-based empirical Bayes to accommodate estimated nuisance parameters.

Second, our guarantee for squared error regret also bounds the Bayes regret for two
ranking-related decision problems, including the problem of selecting high-mobility tracts
in Bergman et al. (2024). Theorem 3 shows that the Bayes regret in squared error domi-
nates the Bayes regret for these decision problems. Coupled with Theorem 1, this implies
that CLOSE-NPMLE has good performance for these ranking-related problems as well.

Third, to assess robustness of CLOSE to the location-scale modeling assumption, Theo-
rem 4 establishes a sense in which CLOSE-NPMLE is worst-case robust. Without imposing
the location-scale assumptions, we show that a population version of CLOSE-NPMLE has
squared error risk within a bounded multiple of the risk of a minimax procedure. Since
the minimax procedure optimizes its worst-case risk, this result shows that CLOSE-NPMLE

cannot perform exceedingly poorly even when the location-scale model is misspecified.
Lastly, since practitioners may want to assess how and whether CLOSE-NPMLE provides

improvements in specific applications, Section 3.4 proposes an out-of-sample validation
procedure by extending the coupled bootstrap in Oliveira et al. (2021). This procedure
provides unbiased loss estimates for arbitrary decision rules. In particular, this procedure
allows practitioners to evaluate whether CLOSE provides improvements by comparing loss
estimates for CLOSE and those for other procedures.

To illustrate our method, Section 4 applies CLOSE to two empirical exercises, building
on Chetty et al. (2020) and Bergman et al. (2024). The first exercise is a Monte Carlo
simulation calibrated to the Opportunity Atlas. For all 15 measures of economic mobility
that we consider, CLOSE-NPMLE improves over all alternatives and captures over 90% of
possible MSE gains relative to no shrinkage, whereas conventional shrinkage captures only
70% on average and as little as 40% for some.
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The second exercise evaluates the out-of-sample performance of various procedures for
the selection policy problem in Bergman et al. (2024). Bergman et al. (2024) use empir-
ical Bayes procedures to select high-mobility Census tracts in Seattle. In an exercise that
mimics theirs, we find that CLOSE-NPMLE selects more economically mobile tracts than
conventional methods. These improvements are large relative to two benchmarks. First,
they are on median 3.2 times the value of basic empirical Bayes—that is, the improvements
the standard method delivers over screening on the raw estimates Yi directly. Therefore,
if one finds using the standard empirical Bayes method a worthwhile methodological in-
vestment, then the additional gain of using CLOSE is likewise meaningful. Second, for
6 out of 15 measures of mobility, CLOSE even improves over the standard method by a
larger amount than the value of data—that is, the amount by which the standard method
improves over selecting Census tracts completely at random. Because the value of data is
likely economically significant, the additional improvements are substantial as well.

2. Model and proposed method

2.1. Empirical Bayes assumptions. We observe estimates Yi and their (estimated) stan-
dard errors σi for parameters θi, over populations i ∈ {1, . . . , n}. We maintain two as-
sumptions that are standard in the empirical Bayes literature (Gilraine et al., 2020; Jiang,
2020; Soloff et al., 2021; Gu and Koenker, 2023; Gu and Walters, 2022).

First, we assume throughout that the estimates are conditionally Gaussian (1.1) and in-
dependent across i. The Gaussian assumption (1.1) is motivated by a central limit theorem
applied to the underlying micro-data. Despite being standard in the empirical Bayes litera-
ture, this assumption is not without loss, as we ignore the fact that the central limit theorem
only provides asymptotic approximations and instead treat the Normality as exact.4

Second, empirical Bayes methods estimate the distribution of (θi, σi). For that to be well-
defined, naturally, we assume that (θi, σi) are sampled i.i.d. from some distribution.5 As
a minor technical perspective, throughout, we condition on σ1:n = (σ1, . . . , σn) and treat
them as fixed. Thus, we think of θi as drawn independently but not necessarily identically:

θi | σi
i.n.i.d.∼ G(i). (2.1)

Let P0 ≡ (G(1), . . . , G(n)) denote the conditional distribution θ1:n | σ1:n.

4Following the empirical Bayes literature, this paper abstracts away from the micro-data and treats the
estimates (Yi, σi) as primitives. See Remark 2 for a concrete example on how Yi, σi are related to the
micro-data and whether (1.1) is appropriate.
5This is analogous to (correlated) random effects in panel data.
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Some further discussions of these assumptions—e.g., on the Gaussian setup (Remark 2),
the independence of (Yi, θi, σi) across i (Remark 3), and the role of additional covariates
Xi (Remark 4)—are deferred to Section 2.5.

Under these assumptions, empirical Bayes methods are desirable for decision making:
They approximate optimal but infeasible decision rules. To see this, consider a decision
problem with loss function L(δ, θ1:n) that evaluates an action δ at a vector of param-
eters θ1:n. The optimal decision—in terms of expected loss EP0 [L(·, θ1:n) | σ1:n] over
(Yi, θi) | σi—is the oracle Bayes decision rule δ⋆. At a realization Y1:n, δ⋆ chooses actions
that minimize the posterior expected loss under the oracle prior P0:

δ⋆(Y1:n, σ1:n;P0) ∈ argmin
δ

EP0 [L(δ, θ1:n) | Y1:n, σ1:n]. (2.2)

Unfortunately, δ⋆ is infeasible since we do not know P0. To remedy, empirical Bayes
methods seek to approximate the oracle Bayes rule δ⋆. Naturally, one recipe for generating
empirical Bayes decision rules is to plug an estimate P̂ for P0 into (2.2):6

δEB(Y1:n, σ1:n; P̂ ) ∈ argmin
δ

EP̂ [L(δ, θ1:n) | Y1:n, σ1:n]. (2.3)

For the leading decision problem where L(·, ·) is mean-squared error, the recipe (2.3) gen-
erates empirical Bayes posterior means—posterior means under P̂ . They are often referred
to as shrinkage estimates.7

2.2. Prior independence and its violation. To simplify P0, popular empirical Bayes meth-
ods often assume prior independence: θi y σi, or, equivalently, G(1) = · · · = G(n) ≡ G(0).

For instance, the standard parametric empirical Bayes method modelsG(i) as i.i.d. Gauss-
ian, G(0) ∼ N (m0, s

2
0) (Morris, 1983). Following the recipe (2.3), this approach esti-

mates P0 by estimating its mean and variance (m0, s
2
0). Henceforth, we shall refer to this

method as INDEPENDENT-GAUSS. State-of-the-art empirical Bayes methods (Jiang, 2020;
Gilraine et al., 2020; Soloff et al., 2021) relax the parametric assumptions on G(0) and
estimate G(0) with nonparametric maximum likelihood (NPMLE). We refer to this method
as INDEPENDENT-NPMLE. The “INDEPENDENT” here emphasizes that they assume prior
independence.
6To emphasize the distinction between the true expectation with respect to the data-generating process (2.1)
and a posterior mean taken with respect to some possibly estimated measure P̂ , we shall use E to refer to the
former and E to refer to the latter. Subscripts typically make the distinction clear as well.
7A complementary view of shrinkage estimation and compound decisions, dating to James and Stein (1961)
and Robbins (1956), does not impose (2.1) and instead views θ1:n as fixed or conditioned upon. In this
paper, however, we do impose (2.1) and refer to empirical Bayes posterior means and shrinkage estimates
interchangeably.
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Despite being convenient for estimating P0, prior independence may be economically
implausible, statistically rejected, and even decision-theoretically harmful. We illustrate
this with an empirical application to the Opportunity Atlas. There, one published measure
of economic mobility defines the economic mobility of a Census tract (θi) as the proba-
bility that a relatively poor Black child from tract i grows up to be relatively rich. More
precisely, θi is the probability of family income ranking in the top 20 percentiles of the
national income distribution, for a Black individual growing up in tract i whose parents are
at the 25th national income percentile.

Intuitively, Census tracts with more low-income Black households should have more
precise estimates of θi, simply because there is a larger sample size to estimate θi. How-
ever, we might also expect that these Census tracts are on average poorer and are less likely
to generate favorable outcomes for low-income Black children than wealthier tracts. Thus,
these Census tracts should have smaller σi but also lower θi, meaning that (σi, θi) are pos-
itively correlated.
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Notes. All tracts within the largest 20 Commuting Zones (CZs) are shown. Due to the re-
gression specification in Chetty et al. (2020), point estimates of θi ∈ [0, 1] do not always lie
within [0, 1]. The orange line plots nonparametric regression estimates of the conditional
mean E[Y | σ] = E[θ | σ] ≡ m0(σ), estimated via local linear regression implemented
by Calonico et al. (2019). The orange shading shows a 95% uniform confidence band,
constructed by the max-t confidence set over 50 equally spaced evaluation points. See
Appendix SM8 for details on estimating conditional moments of θi given σi. □

FIGURE 1. Scatter plot of Yi against log10(σi) in the Opportunity Atlas
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As this economic intuition predicts, prior independence is readily rejected for this mea-
sure of economic mobility. Figure 1 plots Yi—the Opportunity Atlas estimates of θi—
against their standard errors (log10(σi)). Figure 1 also displays an estimate of the condi-
tional mean function m0(σi) ≡ E[θi | σi] = E[Yi | σi]. If θi were independent of σi,
then the true conditional mean function m0(σi) should be constant. Figure 1 shows the
contrary—tracts with more imprecisely estimated Yi tend to have higher mobility.8

What happens if we apply empirical Bayes methods that assume prior independence
here? Figure 2 overlays empirical Bayes posterior means on the scatterplot. In the top
panel, INDEPENDENT-GAUSS shrinks estimates Yi towards a common estimated mean m̂0,
depicted as the black line. When σi and θi are positively correlated—as is the case here—
estimated posterior means under INDEPENDENT-GAUSS systematically undershoot θi for
populations with imprecise estimates. Similarly, the middle panel of Figure 2 shows that
INDEPENDENT-NPMLE suffers from the same undershooting. In contrast, the bottom panel
of Figure 2 previews our preferred procedure, CLOSE-NPMLE, which shrinks towards the
conditional mean E[θi | σi], thus avoiding the undershooting.

This undershooting is particularly problematic if one would like to select high-mobility
Census tracts. On average, these high-mobility tracts are exactly those with high σi. Shrink-
ing these tracts severely towards the estimated common mean leads to suboptimal selec-
tions that may even underperform screening directly based on Yi.9

2.3. Conditional location-scale relaxation of prior independence. To remedy these is-
sues, we propose the following conditional location-scale model as a relaxation:

P (θi ≤ t | σi) = G0

(
t−m0(σi)

s0(σi)

)
, η0(·) ≡ (m0(·), s0(·)) (2.4)

where G0 is normalized to have mean zero and variance one. Equation (2.4) states that
the conditional distribution of θi | σi follows a location-scale family, controlled by σi-
dependent location parameter m0(·) and scale parameter s0(·). By the normalization of
G0, we can think of m0(·) as the conditional mean of θi | σi and s20(·) as the conditional
variance. To be clear, despite generalizing prior independence, (2.4) is still restrictive: We
8Moreover, log σi remains predictive of Yi even if we residualize Yi against a vector of tract-level covariates
(Figure OA5.8). We note that this definition of θi is not the measure used in Bergman et al. (2024). Prior
independence is also readily rejected for the mobility measure used in Bergman et al. (2024), but its violation
is not as severe once adjusted for tract-level covariates (see Section 4 and Figure OA5.7).
9This latter point is similarly made in Mehta (2019), though for different loss functions.
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FIGURE 2. Posterior mean estimates under prior independence

discuss a rationale of this assumption—as well as comparing it to some alternatives—in
Remarks 6 and 7; Theorem 4 provides additional robustness assurances.10

10More restrictive forms of this assumption also appear in the past and concurrent literature. For instance,
Kline et al. (2023) model the dependence as a pure scale model θ | σ ∼ s(σ) · τ for some τ | σ i.i.d.∼ G (with
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Applying the empirical Bayes recipe (2.3) amounts to estimating P0. Under (2.4), it suf-
fices to estimate the unknown hyperparameters (η0, G0). Estimating η0 = (m0, s0) is rela-
tively straightforward, as η0 can be written as conditional moments of Yi as a function of σi:

m0(σ) = E[θ | σ] = E[Y | σ] and s20(σ) = Var(θ | σ) = E[(Y −m0(σ))
2 | σ]−σ2. (2.5)

Estimating these conditional moments reduces to nonparametric regression, for which con-
venient off-the-shelf methods exist (e.g., Calonico et al. (2019) and Appendix SM8).

Estimating G0 is more complicated. To introduce our procedure, we can write (2.4)
equivalently as the following representation with transformed parameters τi ≡ θi−m0(σi)

s0(σi)

and similarly transformed estimates Zi ≡ Yi−m0(σi)
s0(σi)

and νi ≡ σi/s0(σi):

θi = m0(σi) + s0(σi)τi τi | σi
i.i.d.∼ G0

Yi = m0(σi) + s0(σi)Zi Zi | τi, νi ∼ N (τi, ν
2
i ). (2.6)

The representation (2.6) makes clear that, first, the transformed triplet (Zi, τi, νi) obeys
an analogue of the Gaussian model (1.1), where Zi is a noisy Gaussian signal on τi with
variance ν2i . Second, prior independence holds in this model, in terms of the transformed
parameters, as τi | νi

i.i.d.∼ G0.
This observation motivates the following strategy: We first transform (Yi, σi) into (Zi, νi);

we then apply empirical Bayes methods that assume prior independence on these trans-
formed quantities to estimate G0. Indeed, given estimates m̂ and ŝ of m0(·) and s0(·), we
can then form the estimated transformed data Ẑi, ν̂i as

Ẑi =
Yi − m̂(σi)

ŝ(σi)
and ν̂i =

σi
ŝ(σi)

. (2.7)

We then apply empirical Bayes methods assuming prior independence on (Ẑi, ν̂i). This
leads to a family of empirical Bayes strategies that we refer to as conditional location-scale
empirical Bayes, or CLOSE:

CLOSE–STEP 1 Nonparametrically estimate m0(σ), s
2
0(σ) according to (2.5).

CLOSE–STEP 2 With the estimates η̂ = (m̂, ŝ), transform the data according to
(2.7). Apply empirical Bayes methods with prior independence to estimate G0 with
some Ĝn on the transformed data (Ẑi, ν̂i).
CLOSE–STEP 3 Having estimated (η̂, Ĝn) and hence having obtained P̂ , we then

form empirical Bayes decision rules following (2.3).

additional parametric restrictions on s(·)) and George et al. (2017) impose the location scale model (2.4)
with G0 ∼ N (0, 1) (as well as additional parametric restrictions on s0(·),m0(·)).
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This framework produces a family of empirical Bayes strategies, since CLOSE–STEP 2
can take different forms. To leverage theoretical and computational advances, we will fo-
cus on—and recommend—using nonparametric maximum likelihood (NPMLE) to estimate
G0. That is, we maximize the log-likelihood of Ẑi, whose marginal distribution is the con-
volution G0 ⋆ N (0, ν̂2i ), treating m̂, ŝ as fixed: For φ(·) the Gaussian probability density
function and P(R) the set of all distributions supported on R, we maximize

Ĝn ∈ argmax
G∈P(R)

1

n

n∑
i=1

log

∫ ∞

−∞
φ

(
Ẑi − τ
ν̂i

)
1

ν̂i
G(dτ). (2.8)

When the estimated moments m̂, ŝ are constant functions of σ, CLOSE-NPMLE estimates
the same prior as INDEPENDENT-NPMLE. In the theoretical literature, under prior indepen-
dence, INDEPENDENT-NPMLE is state-of-the-art in terms of computational ease and regret
properties.11 Our subsequent results in Section 3 extend some of these favorable properties
to CLOSE-NPMLE under (2.4).

The next subsection introduces three decision problems that our theory shall focus on.
We defer to Section 2.5 some discussions on the implementation of CLOSE-NPMLE (Re-
mark 5), the rationale of (2.4) (Remark 6), alternatives to CLOSE (Remark 7), and another
method in the CLOSE-family (Remark 8).

2.4. Decision problems. To prepare for our theoretical results in Section 3, we review
decision theory notation and formalizing a few decision problems. Let δ(Y1:n, σ1:n) be a
decision rule mapping the data (Y1:n, σ1:n) to actions. Recall that L(δ, θ1:n) denotes a loss
function mapping actions and parameters to a scalar. LetRB(δ;P0) = EP0 [L(δ, θ1:n) | σ1:n]
be the Bayes risk of δ under P0.

The oracle Bayes decision rule δ⋆ (2.2) is optimal in the sense that it minimizes RB.
Thus, a natural performance measure for the empirical Bayesian (2.3)—who tries to mimic
the oracle Bayesian by estimating P0—is the gap between the Bayes risks of δEB and δ⋆.
11The nonparametric maximum likelihood has a long history in econometrics and statistics (Kiefer and
Wolfowitz, 1956; Lindsay, 1995; Heckman and Singer, 1984). There is recent renewed interest. See,
among others, Koenker and Gu (2019), Koenker and Mizera (2014), Jiang and Zhang (2009), Jiang (2020),
Soloff et al. (2021), Saha and Guntuboyina (2020), Polyanskiy and Wu (2020), Shen and Wu (2022),
and Polyanskiy and Wu (2021). Empirical Bayes methods via NPMLE have computational and theoretical
advantages, though much of the favorable theoretical results are proven in a homoskedastic setting. Its
computational ease and lack of tuning parameters are advocated in Koenker and Gu (2019), Koenker and
Mizera (2014), and Koenker and Gu (2017).
One might also consider a sieve likelihood estimator for G0 à la Efron (2016). We conjecture that by an
argument analogous to ours, one could likewise obtain regret guarantees for this sieve likelihood approach
as we do for NPMLE, though we are unfamiliar with such results even in the homoskedastic setting.
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We refer to this quantity as Bayes regret:

BayesRegretn(δEB) = RB(δEB;P0)−RB(δ
⋆;P0)

= EP0 [L(δEB, θ1:n)− L(δ⋆, θ1:n) | σ1:n] (2.9)

where the right-hand side integrates over the randomness in θ1:n, Y1:n, and, by extension,
P̂ . If an empirical Bayes method achieves low Bayes regret, then it successfully imitates
the decisions of the oracle Bayesian, and its decisions are thus approximately optimal. Our
theoretical results focus on bounding Bayes regret for CLOSE.12

We introduce a few concrete decision problems by specifying the actions δ and loss
functions L and state the corresponding oracle and empirical Bayes decision rules.

Decision Problem 1 (Squared-error estimation of θ1:n). The canonical statistical problem
(Robbins, 1956) is estimating the parameters θ1:n under mean-squared error (MSE). That
is, the action δ = (δ1, . . . , δn) collects estimates δi for parameters θi, evaluated with MSE:
L(δ, θ1:n) =

1
n

∑n
i=1(δi−θi)2. The oracle Bayes decision rule δ⋆ = (δ⋆1, . . . , δ

⋆
n) here is the

posterior mean under P0, denoted by θ∗i = θ∗i,P0
≡ EP0 [θi | Yi, σi] with empirical Bayesian

counterpart θ̂i,P̂ = EP̂ [θi | Yi, σi]. ■

Next, we describe two problems that are likely more economically relevant, such as re-
placing low value-added teachers and recommending high-mobility tracts (Gilraine et al.,
2020; Bergman et al., 2024).13

Decision Problem 2 (UTILITY MAXIMIZATION BY SELECTION). Suppose δ consists of
binary selection decisions δi ∈ {0, 1}. For each population, selecting that population
has net benefit θi. The decision maker wishes to maximize utility (i.e., negative loss):
−L(δ, θ1:n) = 1

n

∑n
i=1 δiθi. The oracle Bayes rule selects all whose posterior mean net

benefit θi is nonnegative: δ⋆i = 1
(
θ∗i,P0

≥ 0
)
. One natural empirical Bayes decision rule

replaces θ∗i,P0
with θ∗

i,P̂
, following (2.3).14 ■

12Bayes regret is likewise the focus of the empirical Bayes literature that we build on (Jiang, 2020; Soloff
et al., 2021). On the other hand, other optimality criteria are also considered. For instance, Kwon (2021),
Xie et al. (2012), Abadie and Kasy (2019), and Jing et al. (2016) propose methods that use Stein’s Unbiased
Risk Estimate (SURE) to select hyperparameters for a class of shrinkage procedures. A common thread of
these approaches is that they seek optimality in terms of the frequentist risk RF = E[L(δ, θ1:n) | σ1:n, θ1:n],
but limit attention to squared error and to a restricted class of methods.
13We analyze these problems from a decision-theoretic perspective imposing the sampling assumption (2.1).
For a different and complementary perspective in terms of frequentist hypothesis testing without imposing
(2.1), see Mogstad et al. (2020) and Mogstad et al. (2023). For additional ranking-related decision problems,
see Gu and Koenker (2023).
14In a context where the parameters are conditional average treatment effects for a particular covariate cell,
θi = CATE(i) ≡ E[Y (1) − Y (0) | X = i], and δi are treatment decisions, this problem is an instance of
welfare maximization by treatment choice (Manski, 2004; Stoye, 2009; Kitagawa and Tetenov, 2018; Athey
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Decision Problem 3 (TOP-m SELECTION). Similar to UTILITY MAXIMIZATION BY SE-
LECTION, suppose δ consists of binary selection decisions, with the additional constraint
that exactly m populations are chosen:

∑
i δi = m. The decision maker’s utility is the

average θi of the selected set:

−L(δ, θ1:n) =
1

m

n∑
i=1

δiθi. (2.10)

Oracle Bayes selects the populations corresponding to the m largest posterior means θ∗i,P0

(breaking ties arbitrarily): δ⋆i = 1
(
θ∗i,P0

is among the top-m of θ∗1:n,P0

)
. Again, the empir-

ical Bayes recipe (2.3) replaces P0 with the estimate P̂ . ■

Remark 1. The utility function (2.10) rationalizes the widespread practice of screening
based on empirical Bayes posterior means (Gilraine et al., 2020; Chetty et al., 2014; Kane
and Staiger, 2008; Hanushek, 2011; Bergman et al., 2024). In Bergman et al. (2024), for
instance, where housing voucher holders are incentivized to move to Census tracts selected
according to economic mobility, (2.10) represents the expected economic mobility of a
mover were they to move randomly to one of the selected tracts. Our theoretical results can
accommodate slightly less restrictive mover behavior (Remark B.1). ■

2.5. Discussions. Before presenting our theoretical results in Section 3, we end this sec-
tion with several self-contained remarks.

Remark 2 (Gaussian approximation and estimated standard errors). In our empirical ap-
plication, the σi’s are the estimated standard errors that Chetty et al. (2020) publish. We
might object to (1.1) treating σi as the true standard deviation of Yi. This should be viewed
as an objection to the quality of the Gaussian approximation in (1.1).

To be more concrete, consider the following example that specifies how the Yi’s are gen-
erated. Suppose θi = EQi [Yij] is the population mean of some variable Yij ∼ Qi drawn
from population Qi. Suppose Yi is the sample mean of Yi1, . . . , Yini

i.i.d.∼ Qi and suppose
σi is the estimated standard error for Yi. Then, standard large-sample approximations yield
that for large ni, approximately, σ−1

i (Yi − θi) ∼ N (0, 1). Taking this approximation as
exact yields Yi | θi, σi ∼ N (θi, σ

2
i ). Note that this approximation is valid even though σi is

the estimated standard error.

and Wager, 2021). In this setting, δi is a decision to treat individuals with covariate values in the ith cell. The
average benefit of treating these individuals is their conditional average treatment effect θi. However, we
note that the literature on treatment choice uses a different notion of regret compared to this paper (based on
RF = E[L(δ, θ1:n) | σ1:n, θ1:n] rather than RB).
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Thus, if we were comfortable with treating the Gaussian approximation as exact, we
should then also be comfortable with treating the estimated standard error as the true stan-
dard deviation of Yi. Assessing the robustness of empirical Bayes methods to the failure
of the Gaussian approximation is an important avenue for future work, though beyond the
scope of this paper. ■

Remark 3 (Interpretation when (Yi, θi, σi) are dependent across i). The assumptions (1.1)
and (2.1) imply that (Yi, θi, σi) are i.i.d. across i. This may be violated when the measure-
ments (Yi, Yj) are correlated conditional on θ1:n, σ1:n, or when ((θi, σi), (θj, σj)) are posited
to be correlated in the underlying sampling process for the heterogeneous populations.

When (Yi, θi, σi) are not i.i.d., consider a separable decision problem—in the sense that
L(δ,θ) = 1

n

∑n
i=1 ℓ(δi, θi). Here, the oracle Bayes decision rule (2.2) that erroneously

assumes independence across i—and optimizes decision with respect to the distribution
θi | σi, Yi instead of θi | σ1:n, Y1:n—is nonetheless the best separable decision. That is, this
erroneous oracle rule minimizes expected loss among all decision rules that make deci-
sions solely using information on the ith population: δi(Y1:n, σ1:n) = δi(Yi, σi). Thus, when
(Yi, θi, σi) are correlated, we may view empirical Bayes under (1.1) and (2.1) as approxi-
mating the best separable decision rule, though our statistical guarantees characterizing the
quality of approximation are no longer applicable. ■

Remark 4 (Role of covariatesXi). In many settings, we additionally have access to covari-
atesXi that do not predict the noise in Yi (i.e., Yi | Xi, θi, σi ∼ N (θi, σ

2
i )). When θi | Xi, σi

depends substantially on Xi, decisions that ignore this dependence on Xi may be similarly
suboptimal. Our model (2.4) can easily adapt to accommodate covariates by making m0(·)
and s0(·) depend on Xi. Our subsequent theoretical results also extend naturally.

Nevertheless, this paper primarily focuses on the dependence with respect to σi because
σi is in a sense a special covariate. First, σi is always present in any Gaussian empirical
Bayes setting. Second, crucially, the likelihood Yi | Xi, θi, σi depends on σi but not on
Xi. As a result, marginalizing out Xi does not change the statistical structure of Yi, but
marginalizing out σi does.

This observation means that we can often afford to be more cavalier with respect to
Xi—as long as we are satisfied with a procedure that approximates some constrained ora-
cle Bayesian who is oblivious about features of Xi.15 To be clear, these constrained oracle
Bayesians make worse decisions than the oracle Bayesian who fully knows θi | Xi, σi.

15For instance, empirical Bayes procedures that ignore Xi entirely can be rationalized as approximating
the constrained oracle who does not have access to Xi. Similarly, procedures—which we employ in
Section 4—that linearly residualize Yi against Xi and perform empirical Bayes on the projection residuals
are approximations of constrained oracles who only have access to the projection residuals.
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Still, their decisions outperform naive decisions using Yi. In contrast, because σi enters the
likelihood, all oracle Bayesians have access to σi, and therefore empirical Bayesians must
model θi | σi accurately. ■

Remark 5 (Practical issues when implementing CLOSE-NPMLE). We highlight two issues
when implementing CLOSE-NPMLE, both of which have default solutions in our accompa-
nying software. First, analogue estimators for s20(σi) = Var(Yi | σi)−σ2

i may take negative
values.16 In our experience, truncating ŝ at zero does not seem to cause bad performance
when computing posterior means. Nevertheless, in Appendix SM8 and the software im-
plementation, we propose a heuristic but data-driven truncation rule that produces strictly
positive ŝ, borrowing from a statistics literature on estimating non-centrality parameters
for non-central χ2 distributions (Kubokawa et al., 1993).Second, in optimizing the NPMLE

objective (2.8), following Koenker and Mizera (2014) and Koenker and Gu (2017), we ap-
proximate the set of all distributions P(R) with the set of all probability mass functions
over a finite set of grid points. These grid points need to be chosen, though, theoretically,
the only downside of a finer grid is computational burden. Ideally, adjacent grid points
should have a sufficiently small and economically insignificant gap between them.17 ■

Remark 6 (Rationale for the location-scale assumption). Our strategy CLOSE is certainly
not the only method to relax prior independence. Our assumption (2.4) is motivated in
part by a desire to take advantage of the appealing theoretical and computational properties
of INDEPENDENT-NPMLE, while mitigating the bad consequences of imposing prior inde-
pendence. Subjected to this goal, there is a sense in which (2.4) is maximally flexible (see
Appendix OA4.1.2 for details). Suppose we consider the class of procedures that transform
(Yi, σi) in some way, and then apply INDEPENDENT-NPMLE to the transformed estimates.
In order to preserve conditional Normality of the transformed estimates, we are limited to
considering affine transformations of Yi. Thus, if the post-transformation estimates were to
satisfy prior independence, then (2.4) is the most flexible specification we can allow. ■

Remark 7 (Alternatives to CLOSE). Among alternative relaxations of prior independence,
which we discuss at length in Appendix OA4.1, one may seem particularly natural (Gu
and Koenker, 2017; Fu et al., 2020). In many cases, the sample-size-scaled estimated stan-
dard error S2

i = niσ
2
i is an estimator for some population variance σ2

i0. Note that, under a

16The negative estimated variance phenomenon is in part caused by estimation noise in Var(Yi | σi).
However, in our empirical application, there is some evidence that observations with large estimated σi’s are
underdispersed for the measures of economic mobility in the Opportunity Atlas (see Appendix OA5.1.)
17Since the true prior G0 for τi have zero mean and unit variance, we find that a fine grid within [−6, 6] (e.g.,
400 equally spaced grid points), with a coarse grid on [mini Ẑi,maxi Ẑi] \ [−6, 6] (e.g., 100 equally spaced
grid points), performs well.
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Gaussian approximation similar to (1.1),[
Yi

S2
i

]
| Σi ∼ N

([
θi

σ2
i0

]
,Σi

)
for some known or estimable Σi. One could perform bivariate empirical Bayes by estimat-
ing the bivariate distribution of (θi, σ2

i0) flexibly. This accounts for the dependence between
θi and the population variance σ2

i0. However, it remains possible that (θi, σ2
i0) | Σi depends

on Σi, which is often a function of the sample sizes ni underlying (Yi, S
2
i ). Thus, though

this bivariate formulation controls some channels of how σi predicts θi, prior independence
issues still apply. ■

Remark 8 (CLOSE-GAUSS, a “lite” version of CLOSE-NPMLE). If we assume that the shape
parameter G0 is Gaussian, the oracle Bayes posterior means are simply

θ∗i,N (0,1),η0
=

σ2
i

s20(σi) + σ2
i

m0(σi) +
s20(σi)

s20(σi) + σ2
i

Yi. (2.11)

Equation (2.11) is the conditional-on-σi analogue of posterior means under INDEPENDENT-
GAUSS. Despite being rationalized under the assumption θi | σi ∼ N (m0(σi), s

2
0(σi)), the

oracle (2.11) enjoys strong robustness properties even without (2.4). First, (2.11) is the
optimal decision rule for estimating θi when we restrict to the class of decision rules that
are linear in Yi (Weinstein et al., 2018). Second, (2.11) is minimax in the sense that it
minimizes the worst-case mean squared error over choices of G(1), . . . , G(n).18

However, the Normality assumption does imply that (2.11), unlike CLOSE-NPMLE, fails
to approximate the optimal decision (2.2) when the location-scale assumption (2.4) holds.
Since we also show a sense in which CLOSE-NPMLE is worst-case robust (Theorem 4), we
recommend CLOSE-NPMLE over CLOSE-GAUSS, unless the researcher is extremely con-
cerned about the misspecification of the location-scale model. ■

3. Theoretical results

We observe (Yi, σi)
n
i=1, where (θi, σi) satisfies the location-scale assumption (2.4) and

(Yi, θi, σi) obeys the Gaussian location model (1.1). Our recommended procedure, CLOSE-
NPMLE, transforms the data (Yi, σi) into (Ẑi, ν̂i), with estimated nuisance parameters η̂ =

(m̂, ŝ) for η0 = (m0, s0) in CLOSE–STEP 1 . It then estimates the unknown shape param-
eter G0 via NPMLE (2.8) on (Ẑi, ν̂i)

n
i=1.

18Formally, θ∗1:n,N (0,1),η0
∈ argminδ1:n supG(1:n)

1
n

∑n
i=1 EG(i)

[
(δi(Y1:n, σ1:n)− θi)2

]
, where the

supremum is taken over G(i) having moments η0(σi).
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Our leading result shows that CLOSE-NPMLE mimics the oracle Bayesian as well as pos-
sible, for the problem of estimation under squared error loss (Decision Problem 1), in the
sense that its Bayes regret (2.9) vanishes at the minimax optimal rate. Our second result
connects squared error estimation to Decision Problems 2 and 3, by showing that if an em-
pirical Bayesian has low regret for Decision Problem 1, then they likewise have low regret
for Decision Problems 2 and 3.

Since our main results assume the location-scale model, one may be concerned about
its potential misspecification. Theorem 4 bounds the worst-case Bayes risk of an ideal-
ized version of CLOSE-NPMLE (i.e. with known η0 and fixed but misspecified Ĝn) as a
multiple of a notion of minimax risk, without assuming (2.4). Thus, even under misspec-
ification, CLOSE-NPMLE does not perform arbitrarily badly relative to the minimax pro-
cedure. Lastly, Section 3.4 introduces a validation procedure that produces out-of-sample
estimates of the performance of arbitrary decision procedures, without assuming any addi-
tional structure beyond Normality (1.1), which is helpful for evaluating various empirical
Bayes methods in practice.

Remark 9 (Notation). In what follows, we use the symbol C to denote a generic posi-
tive and finite constant which does not depend on n. We use the symbol Cx to denote a
generic positive and finite constant that depends only on x, some parameter(s) that describe
the problem. Occurrences of the same symbol C,Cx may not refer to the same constants.
Similarly, for An, Bn ≥ 0, generally functions of n, we use An ≲ Bn to mean that some
universal C exists such that An ≤ CBn for all n, and we use A ≲x B to mean that some
universal Cx exists such that An ≤ CxBn for all n.19 Since all expectation or probability
statements are with respect to the conditional distribution P0 of θ1:n | σ1:n, going forward,
we treat σ1:n as fixed and simply write E[·],P(·) to denote the expectation and probability
over θ1:n | σ1:n ∼ P0, and omitting the subscript P0 or the conditioning on σ1:n. ■

3.1. Regret rate in squared error. Define MSERegretn as the excess loss of the empiri-
cal Bayes posterior means relative to that of the oracle Bayes posterior means:

MSERegretn(G, η) ≡
1

n

n∑
i=1

(θ̂i,G,η − θi)2 −
1

n

n∑
i=1

(θ∗i − θi)
2 ,

where θ∗i are the oracle posterior means and θ̂i,G,η are the posterior means under a prior
parametrized by (G, η). The corresponding Bayes regret (2.9) for CLOSE-NPMLE is then

19In logical statements, appearances of ≲ implicitly prepend “there exists a universal constant” to the
statement. For instance, statements like “under certain assumptions, P(An ≲ Bn) ≥ c0” should be read as
“under certain assumptions, there exists a constant C > 0 such that for all n, P(An ≤ CBn) ≥ c0.”
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the P0-expectation of MSERegretn:

BayesRegretn = E
[
MSERegretn(Ĝn, η̂)

]
= EP0

[
1

n

n∑
i=1

(θ∗i − θ̂i,Ĝn,η̂)
2

]
. (3.1)

Equation (3.1) additionally notes that expected MSERegretn is equal to the expected mean-
squared difference between the empirical Bayesian posterior means θ̂i,Ĝn,η̂ and the oracle
Bayes posterior means θ∗i .

We assume that P0 ∈ P0 belongs to some restricted class. Informally speaking, our first
main result shows that for some constants (C, β) that depend solely on P0, the Bayes regret
in squared error decays at the same rate as ∥η̂ − η0∥2∞ ≡ max (∥m̂−m0∥∞, ∥ŝ− s0∥∞)2:

BayesRegretn ≤ C(log n)β max

(
E∥η̂ − η0∥2∞,

1

n

)
,

This result continues a recent statistics literature on empirical Bayes methods via NPMLE

by characterizing the effect of an estimated nuisance parameter η̂.20

Moreover, we show that controlling the Bayes regret is no easier than estimating m in
∥·∥22, which is a corresponding lower bound on regret. There exists c such that for any
estimator of θi, its worst-case regret is bounded below21

sup
P0∈P0

BayesRegretn ≥ c inf
m̂

sup
m0

E∥m̂−m0∥22.

Since the minimax estimation rates of ∥η̂ − η0∥∞ and of ∥η̂ − η0∥2 are the same up to log-
arithmic factors, we conclude that our regret upper bound is rate-optimal up to logarithmic
factors. We now introduce the assumptions on P0 ∈ P0 needed for these results, state the
upper and lower bounds, and provide a technical discussion.

3.1.1. Assumptions for regret upper bound. We first assume that Ĝn is an approximate
maximizer of the log-likelihood on the transformed data Ẑi and ν̂i satisfying some sup-
port restrictions. This is not a restrictive assumption, as the actual maximizers of the log-
likelihood function satisfy it.22

20Our theory hews closely to—and extends—the results in Jiang (2020) and Soloff et al. (2021), which
themselves are extensions of earlier results in the homoskedastic setting (Jiang and Zhang, 2009; Saha and
Guntuboyina, 2020). These results, under either homoskedasticity or prior independence, show that empirical
Bayes derived from estimating the prior via NPMLE achieves fast regret rates. In particular, Soloff et al. (2021)
show that the regret rate is of the formC(log n)β 1

n under prior independence and assumptions similar to ours.
21Our proof only exploits a lower bound for the performance of m̂; doing so is without loss if m0 and s0
belong to the same smoothness class.
22In particular, the support restriction for Ĝn in Assumption 1 is satisfied by all maximizers of the likelihood
function (see Corollary 3 in Soloff et al., 2021).
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Assumption 1. Let ψi(Zi, η̂, G) ≡ log
(∫∞

−∞ φ
(
Ẑi−τ
ν̂i

)
G(dτ)

)
be the objective function

in (2.8), ignoring a constant factor 1/ν̂i. We assume that Ĝn satisfies

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn) ≥ sup
H∈P(R)

1

n

n∑
i=1

ψi(Zi, η̂, H)− κn (3.2)

for tolerance κn

κn =
2

n
log

(
n√
2πe

)
. (3.3)

Moreover, we require that Ĝn has support points within [mini Ẑi,maxi Ẑi]. To ensure that
κn is positive, we assume that n ≥ 7 = ⌈

√
2πe⌉.23

We now state further assumptions on P0 beyond (2.4). First, we assume that G0 is suffi-
ciently thin-tailed for its moments to grow slowly.24

Assumption 2. The distributionG0 has zero mean, unit variance, and admits simultaneous
moment control with parameter α ∈ (0, 2]: There exists a constant A0 > 0 such that for all
p > 0,

(Eτ∼G0 [|τ |p])
1/p ≤ A0p

1/α. (3.4)

Next, Assumption 3 imposes that members of P0 have various variance parameters uni-
formly bounded away from zero and infinity. This is a standard assumption in the literature,
maintained likewise by Jiang (2020) and Soloff et al. (2021).

Assumption 3. The variances (σ1:n, s0) admit lower and upper bounds: σi ∈ (σℓ, σu) and
s0(·) ∈ (sℓ, su), where σℓ, σu, s0ℓ, s0u > 0.

Lastly, we require that m0, s0 satisfy some smoothness restrictions. We also require that
m̂, ŝ satisfy some corresponding regularity conditions.

Assumption 4. Let Cp
A1
([σℓ, σu]) be the Hölder class of order p ≥ 1 with maximal Hölder

norm A1 > 0 supported on [σℓ, σu].25 We assume that

(1) The true conditional moments are Hölder-smooth: m0, s0 ∈ Cp
A1
([σℓ, σu]).

23The constants κn also feature in Jiang (2020) to ensure that the fitted likelihood is bounded away from
zero. The particular constants in κn simplify expressions and are not material to the result.
24An equivalent statement to Assumption 2 is that there exists a1, a2 > 0 such that PG0

(|τ | > t) ≤
a1 exp (−a2tα) for all t > 0. Note that when α = 2, G0 is subgaussian, and when α = 1, G0 is subex-
ponential (see the definitions in Vershynin, 2018), as commonly assumed in high-dimensional statistics.
Assumption 2 is slightly stronger than requiring that all moments exist for G0, and weaker than requiring
G0 to have a moment-generating function. Similar tail assumptions feature in the theoretical literature on
empirical Bayes (Soloff et al., 2021; Jiang and Zhang, 2009; Jiang, 2020).
25We follow the definition of Hölder classes in van der Vaart and Wellner (1996), Section 2.7.1.
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Additionally, let β0 > 0 be a constant. Let V be a set of bounded functions supported
on [σℓ, σu] that (i) is uniformly bounded supf∈V∥f∥∞ ≤ CA1 and (ii) admits the entropy
bound logN(ϵ,V , ∥·∥∞) ≤ CA1,p,σℓ,σu(1/ϵ)

1/p.

We assume that the estimators for m0 and s0, η̂ = (m̂, ŝ), satisfy:

(2) For any ϵ > 0, there exists a sufficiently large C = C(ϵ), such that for all n,

P
(
max (∥m̂−m0∥∞, ∥ŝ− s0∥∞) > C(ϵ)n− p

2p+1 (log n)β0
)
< ϵ.

(3) The nuisance estimators take values in V almost surely: P (m̂ ∈ V , ŝ ∈ V) = 1.
(4) The conditional variance estimator respects the conditional variance bounds in As-

sumption 3: P
(
s0ℓ
2
< ŝ < 2s0u

)
= 1.

Assumption 4 is a Hölder smoothness assumption on the nuisance parameters m0 and
s0, which is a standard regularity condition in nonparametric regression; our subsequent
minimax rate optimality statements are relative to this class. Moreover, it is also a high-
level assumption on the quality of the estimation procedure for (m̂, ŝ). Specifically, As-
sumption 4 expects that the nuisance parameter estimates m̂ and ŝ are rate-optimal up to
logarithmic factors (Stone, 1980). Assumption 4 also expects that the nuisance parameter
estimates belong to a class V with the same uniform entropy behavior as the Hölder class
Cp
A1
([σℓ, σu]).26

Assumptions 2 to 4 specify a class of distributions P0 and nuisance estimators η̂ indexed
by a set of hyperparameters H = (σℓ, σu, sℓ, su, A0, A1, α, β0, p). Our subsequent theoreti-
cal results are uniform for a fixedH.

3.1.2. MSE regret results. Consider the following “good event,” indexed by C > 0,

An(C) ≡
{
∥η̂ − η0∥∞ ≤ Cn− p

2p+1 (log n)β0
}
. (3.5)

An(C) indicates that the nuisance parameter estimates are accurate within some radius in
∥·∥∞. Our main result bounds the Bayes regret in MSE, assuming that some C1,H can be
chosen so that An(C1,H) has sufficiently high probability.27

26Regarding Assumption 4(2), we note that kernel smoothing estimators attain the rates required for Hölder
smooth functions m0, s0 (see Tsybakov (2008) and Appendix SM8). Regarding Assumption 4(3), if the
nuisance parameters are p-Hölder smooth almost surely, we can simply take V = Cp

A′
1
([σℓ, σu]) for some

potentially different A′
1. This can be achieved in practice by, say, projecting estimated nuisance parameters

η̃ to CA1
([σℓ, σu]) in ∥·∥∞. Finally, Assumption 4(4) also expects the nuisance parameter estimates to

respect the boundedness constraints for s0. This is mainly so that our results are easier to state; we show
in Appendix SM8 that our truncation rule satisfies weaker conditions that are nonetheless sufficient for the
conclusion of Theorem 1.
27Note that by Assumption 4(2), C can be chosen such that An(C) occurs with arbitrarily high probability.
The additional assumption P(An) ≥ 1 − n−2 imposes that ∥η̂ − η0∥∞ concentrates around E[∥η̂ − η0∥∞]
so that P[∥η̂ − η0∥∞ > CE[∥η̂ − η0∥∞]] decays sufficiently fast with n for some C > 1. Appendix SM8
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Theorem 1. Assume Assumptions 1 to 4 hold. Suppose, additionally, for all sufficiently
large C1,H > 0, P(An(C1,H)) ≥ 1− n−2. Then, there exists a constant C0,H > 0 such that
the following upper bound holds:

BayesRegretn = E
[
MSERegretn(Ĝn, η̂)

]
≤ C0,Hn

− 2p
2p+1 (log n)

2+α
α

+3+2β0 . (3.6)

Second, we show a corresponding lower bound on the Bayes regret—i.e., a lower bound
on the worst-case regret when an adversary picks G0, η0—by showing that any good pos-
terior mean estimate θ̂i implies a good estimate m̂(σi) for m0. Minimax lower bounds for
estimation ofm0 then imply lower bounds for estimation of the oracle posterior means θ∗i .

28

Theorem 2. Fix a set of valid hyperparameters H. Let P(H, σ1:n) be the set of distribu-
tions P0 on support points σ1:n which satisfy (2.4) and Assumptions 2 to 4 corresponding
to H.29 For a given P0, let θ∗i = EP0 [θi | Yi, σi] denote the oracle posterior means. Then
there exists a constant cH > 0 such that

inf
θ̂1:n

sup
σ1:n∈(σℓ,σu)
P0∈P(H,σ1:n)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2 − (θ∗i − θi)2
]
≥ cHn

− 2p
2p+1 ,

where the infimum is taken over all (possibly randomized) estimators of θ1:n.

Therefore, the rate (3.6) is optimal up to logarithmic factors. The additional logarithmic
factors are partly the price of having to estimate G0 via NPMLE and partly deficiencies in
the proof of Theorem 1. In any case, this cost is not substantial. The upper bound in Theo-
rem 1 is a finite-sample statement, holding uniformly over all distributions P0 delineated by
the problem parameters H. However, the usefulness of Theorem 1 still lies in the conver-
gence rate, as the constants implied by the proofs are likely large. The proof of Theorem 1
is deferred to the Online Appendix, but its main ideas are outlined in Appendix A. The key
theoretical novelty is characterizing the behavior of nuisance parameter estimation on the
NPMLE objective function, as well as its subsequent impact on Bayes regret.

We mention two generalizations here. First, these regret upper bounds readily extend to
the case where covariates are present and the location-scale assumption is with respect to

verifies that local linear regression satisfies a weakening of these assumptions that are also sufficient for the
conclusion of Theorem 1.
28A similar argument is considered in Ignatiadis and Wager (2019) for a related but distinct setting.
29This result additionally imagines the adversary picking the support points σ1:n. This is because the
nonparametric regression problem would be “too easy” for certain configurations of σ1:n. For instance, when
σ1:n only takes m ≪ n unique values, nonparametric regression is possible at rate

√
m/n. For the proof, it

suffices to consider σ1:n being equally spaced in [σℓ, σu].
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the additional covariates Xi:

θi | σi, Xi ∼ G0

(
θi −m0(Xi, σi)

s0(Xi, σi)

)
,

under smoothness assumptions on m0, s0, m̂, ŝ analogous to Assumption 4. Of course, the
resulting convergence rate would suffer from the curse of dimensionality, and the term
n− 2p

2p+1 would be replaced with n− 2p
2p+1+d , where d is the dimension of X . Second, Ap-

pendix SM10 generalizes the regret rate to the problem of estimating higher moments
(θvi , v ∈ N) in squared error loss. Regret rates for these objects are novel in the empirical
Bayes literature and are useful for decision problems where we wish to model risk aversion.
For instance, the oracle’s posterior variance is of the form E[θ2 | Yi, σi]− E[θ | Yi, σi]2.

Taken together, Theorems 1 and 2 are strong statistical optimality guarantees for CLOSE-
NPMLE for MSE. That is, the worst-case MSE performance gap of CLOSE-NPMLE relative
to the oracle contracts at the best possible rate, meaning that CLOSE-NPMLE mimics the
oracle as well as possible.

So far, our regret guarantees are only about estimation in MSE (Decision Problem 1).
The next subsection analyzes regret for empirical Bayes decision rules targeted to the
ranking-related problems (Decision Problems 2 and 3), and relates their performances to
those for Decision Problem 1.

3.2. Other decision objectives and relation to squared-error loss. The oracle Bayes de-
cision rules δ⋆ in Decision Problems 2 and 3 depend solely on the vector of oracle Bayes
posterior means θ∗1:n. Therefore, for these problems, the natural empirical Bayes deci-
sion rules simply replace oracle Bayes posterior means (θ∗i ) with empirical Bayes ones (θ̂i)
in the oracle decision rules. For instance, if one is comfortable with the prior estimated
by CLOSE-NPMLE, then the corresponding decision rules for Decision Problems 2 and 3
threshold based on estimated posterior means under CLOSE-NPMLE.

In these problems, BayesRegretn (2.9) is equal to the expected risk gap between us-
ing the feasible decision rules δ̂ and the oracle decision rules δ⋆. To specialize, we let
UMRegretn denote BayesRegretn for Decision Problem 2 and we let TopRegret(m)

n de-
note BayesRegretn for Decision Problem 3. The following result relates UMRegretn and
TopRegret(m)

n to MSERegretn by showing that if θ̂i are close to θ∗i in MSE, then decisions
plugging in θ̂i are also close to their oracle counterparts in terms of Bayes risk.

Theorem 3. Suppose (2.1) holds. Let δ̂i be the plug-in decisions with any vector of esti-
mates θ̂i. Then,
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(1) For UTILITY MAXIMIZATION BY SELECTION,

E[UMRegretn(δ̂)] ≤

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (3.7)

(2) For TOP-m SELECTION,

E[TopRegret(m)
n (δ̂)] ≤ 2

√
n

m

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

. (3.8)

Theorem 3 shows that the two decision problems UTILITY MAXIMIZATION BY SE-
LECTION and TOP-m SELECTION are easier than estimating the oracle Bayesian posterior
means, in the sense that the regret of the latter dominates those of the former. As a result,
our convergence rates from Theorem 1 also upper bound regret rates for these two decision
problems, rendering the regret rates more immediately useful for policy problems. In par-
ticular, for m/n ≍ 1, both regret rates (3.7) and (3.8) are of the form n−p/(2p+1)(log n)c =

o(1) under Theorem 1. Thus, the performance of the empirical Bayes decision rule approx-
imates that of the oracle with at least the rate O(n−p/(2p+1)) up to log factors.

Remark 10 (Tightness of Theorem 3). We suspect that the actual performance of CLOSE-
NPMLE for Decision Problems 2 and 3 may be better than predicted by Theorem 3. The
proof of Theorem 3 exploits the fact that when the empirical Bayesian makes a selection
mistake, the size of the mistake is not large if the square-error regret is low. It does not ex-
ploit the fact that if squared error regret is low, then the empirical Bayesian may be unlikely
to make mistakes in the first place.30 Nevertheless, Theorem 3 is competitive with recent re-
sults. For instance, in nonparametric settings, the rate in Theorem 3 is more favorable than
the upper bound derived in Coey and Hung (2022), who also study Decision Problem 3. ■

3.3. Robustness to the location-scale assumption (2.4). We prove Theorems 1 and 2 im-
posing the location-scale model (2.4). This is an optimistic assessment of the performance
of CLOSE-NPMLE. While (2.4) nests prior independence, it may still be misspecified. We
now explore the worst-case behavior of CLOSE-NPMLE without (2.4).

We will do so by considering an idealized version of the procedure. So long as θi | σi
has two moments, η0(·) = (m0(·), s0(·)) are well-defined as conditional moments. We will
assume that m0, s0 are known. Without the location-scale model, G0 is ill-defined, but we
30Upper and lower bounds are derived in related but distinct settings by Audibert and Tsybakov (2007),
Bonvini et al. (2023), and Liang (2000); some upper bounds, under possibly stronger assumptions, appear
better than implied by Theorem 3. We speculate that the bound for UTILITY MAXIMIZATION BY SELECTION
can be tightened by verifying a margin condition, using Proposition 2 in Bonvini et al. (2023).
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assume that we obtain some pseudo-true value G∗
0 that has zero mean and unit variance.31

Thus, for estimating τi =
θi−m0(σi)
s0(σi)

, whose true prior is τi | σi ∼ Gi, this idealized pro-
cedure uses some misspecified prior G∗

0 ̸= Gi, where G∗
0 agrees with Gi in the first two

moments.
Using results we develop in a related note (Chen, 2023), we show that this idealized pro-

cedure has maximum risk within a constant factor of the minimax risk, uniformly over η0.
The minimax risk here is defined with respect to a game where the analyst knows m0, s0

and an adversary chooses the shape of the distribution τi | σi.
Theorem 4. Under (2.1) but not (2.4), assume the conditional distribution θi | σi has mean
m0(σi) and variance s20(σi). Denote the set of distributions of θ1:n | σ1:n which obey these
restrictions as P(m0, s0). Let θ̂i,G∗

0,η0
denote the posterior means under a prior satisfying

(2.4) with parameters G∗
0, η0, for some fixed G∗

0 with mean zero and variance one. Let
ρ = maxi s

2
0(σi)/σ

2
i < ∞ be the maximal conditional signal-to-noise ratio and assume

that it is bounded. Then, for some Cρ <∞,

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i,G∗
0,η0
− θi)2

]
≤ Cρ · inf

θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
.

(3.9)
where the infimum on the right-hand side is over all (possibly randomized) estimators of θi
given (Yi, σi)

n
i=1 and η0(·).

Theorem 4 shows that the worst-case behavior of an idealized version of CLOSE-NPMLE

comes within a factor of the minimax risk and hence is not arbitrarily unreasonable, even
under misspecification. We caution that (3.9) is a fairly weak guarantee, in that the decision
rule that simply outputs the prior conditional mean (δi = m0(σi)) also satisfies it. Neverthe-
less, even so, (3.9) does not hold for the idealized version of INDEPENDENT-GAUSS, plug-
ging in known unconditional moments m0 = 1

n

∑n
i=1m0(σi) and s20 = 1

n

∑n
i=1(m0(σi) −

m0)
2 + s20(σi).

32

31This is a reasonable condition to impose, since every conditional prior distribution τi | σi obeys this
moment constraint. We do not know if the maximizer G of the population analogue to (2.8) respects the
moment constraints. In any case, imposing these moment constraints computationally in NPMLE is feasible,
as they are simply linear constraints over the optimizing variables. Projecting the estimated Ĝn to these
moment constraints makes little difference in our empirical exercise (Appendix OA5.3).
32To wit, take s0(σi) ≈ 0. Then, the minimax risk as a function of (s0(·),m0(·)) is approximately zero, but
m0(·) can be chosen such that the risk of INDEPENDENT-GAUSS is bounded away from zero.
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For additional reassurance under misspecification, Appendix OA4.2 discusses an inter-
pretation of CLOSE-NPMLE under misspecification of (2.4). We end this section with a val-
idation procedure that provides unbiased evaluation without relying on the location-scale
model.

3.4. Validating performance by coupled bootstrap. Here, we describe a procedure that
provides unbiased estimates of the loss of arbitrary decision procedures for Decision Prob-
lems 1 to 3. Practitioners can use this procedure to evaluate the gain of CLOSE-NPMLE

relative to other alternatives—we do so extensively in Section 4.
For some ω > 0 and an independent Gaussian noise Wi ∼ N (0, 1), consider adding to

Yi and subtracting from Yi some scaled version of Wi:

Y
(1)
i = Yi +

√
ωσiWi Y

(2)
i = Yi −

1√
ω
σiWi.

Oliveira et al. (2021) call (Y (1)
i , Y

(2)
i ) the coupled bootstrap draws. Observe that the two

draws are conditionally independent under (1.1):[
Y

(1)
i

Y
(2)
i

]
| θi, σ2

i ∼ N

([
θi

θi

]
,

[
(1 + ω)σ2

i 0

0 (1 + ω−1)σ2
i

])
. (3.10)

The conditional independence allows us to use Y (2)
i as an out-of-sample validation for de-

cision rules computed based on Y (1)
i . We denote their variances by σ2

i,(1) and σ2
i,(2).

The coupled bootstrap can be thought of as approximating sample-splitting the micro-
data without needing access. We could imagine splitting the micro-data into training and
testing sets, and think of Y (1)

i as estimates computed on the training data and Y (2)
i as es-

timates computed on the testing data. We might compute decisions based on Y
(1)
i and

evaluate them honestly with fresh data Y (2)
i . The coupled bootstrap precisely emulates this

sample-splitting procedure.
To see this, suppose Yi = 1

ni

∑ni
j=1 Yij is a sample mean of i.i.d. micro-data Yij : j =

1, . . . , ni, as in Remark 2. Suppose we split the micro-data into a training set and a test-
ing set, with proportions 1

ω+1
and ω

ω+1
, respectively. Let Y (1)

i and Y (2)
i be the training and

testing set sample means, respectively. Then the central limit theorem implies that, approx-
imately, (3.10) holds for Y (1)

i and Y (2)
i . For instance, coupled bootstrap with a value of

ω = 1/9 is statistically equivalent to splitting the micro-data with a 90-10 train-test split.
The following proposition formalizes this idea and states unbiased estimators for the loss

of these decision rules, as well as their accompanying standard errors.33

33Oliveira et al. (2021) state the unbiased estimation result for the mean-squared error estimation problem.
They connect the coupled bootstrap estimator to Stein’s unbiased risk estimate. Our calculation for other
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TABLE 1. Unbiased estimators for loss of decision rules and associated
conditional variance expressions (Proposition 1)

Problem Unbiased
estimator of loss, T

(
Y

(2)
1:n , δ

) Var
(
T
(
Y

(2)
1:n , δ

)
| F
)

Decision Problem 1 1
n

∑n
i=1

(
Y

(2)
i − δi(Y (1)

1:n )
)2
− σ2

i,(2)
1
n2

∑n
i=1 Var

(
(Y

(2)
i − δi(Y (1)

1:n ))
2 | F

)
Decision Problem 2 − 1

n

∑n
i=1 δi(Y

(1)
1:n )Y

(2)
i

1
n2

∑n
i=1 δi(Y

(1)
1:n )σ

2
i,(2)

Decision Problem 3 − 1
m

∑n
i=1 δi(Y

(1)
1:n )Y

(2)
i

1
m2

∑n
i=1 δi(Y

(1)
1:n )σ

2
i,(2)

Proposition 1. Suppose (Yi, σi) obey (1.1). Fix some ω > 0 and let Y (1)
1:n , Y

(2)
1:n be the cou-

pled bootstrap draws. For some decision problem, let δ(Y (1)
1:n ) be some decision rule using

only data
(
Y

(1)
i , σ2

i,(1)

)n
i=1

. Let F =
(
θ1:n, Y

(1)
1:n , σ1:n,(1), σ1:n,(2)

)
, for Decision Problems 1

to 3, the estimators T (Y (2)
1:n , δ) displayed in Table 1 are unbiased for the corresponding loss:

E
[
T (Y

(2)
1:n , δ(Y

(1)
1:n )) | F

]
= L

(
δ(Y

(1)
1:n ), θ1:n

)
.

Moreover, their conditional variances are equal to those displayed in Table 1.

Proposition 1 allows for an out-of-sample evaluation of decision rules, as well as un-
certainty quantification around the estimate of loss, solely imposing the heteroskedastic
Gaussian model. This is a useful property in practice for comparing different empirical
Bayes methods. The alternative is to evaluate the performance of competing methods rela-
tive to some estimated prior—say the one learned by CLOSE-NPMLE. Doing so likely tips
the scale in favor of a particular method, and we advocate for the coupled bootstrap instead.

4. Empirical illustration

How does CLOSE-NPMLE perform in the field? We now consider two empirical exercises
related to the Opportunity Atlas (Chetty et al., 2020) and Creating Moves to Opportunity
(Bergman et al., 2024).

Using longitudinal Census micro-data, Chetty et al. (2020) estimate a suite of tract-level
children’s outcomes in adulthood and publish the estimates, along with corresponding stan-
dard errors, in a collection of datasets called the Opportunity Atlas. Taking these estimates
from the Opportunity Atlas, Bergman et al. (2024) conducted a program in Seattle called

loss functions extends their unbiased estimation result. Proposition 1 can also be easily generalized to other
loss functions that admit unbiased estimators (Effectively, the loss is a function of a Gaussian location θi.
For unbiased estimation of functions of Gaussian parameters, see Table A1 in Voinov and Nikulin, 2012).
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Creating Moves to Opportunity. They provided assistance to treated low-income individ-
ualsto move to Census tracts with empirical Bayes posterior means in the top third.34 We
view Bergman et al. (2024)’s objectives as TOP-m SELECTION (Decision Problem 3), for
m equal to one third of the number of tracts in King County, Washington (Seattle).

The Opportunity Atlas also includes tract-level covariates, a complication that we have
so far abstracted away from. In the ensuing empirical exercises, following Bergman et al.
(2024), the estimates and parameters are residualized against the covariates as a preprocess-
ing step. We now let Ỹi denote the raw Opportunity Atlas estimates for a pre-residualized
parameter ϑi and let (Yi, θi) be their residualized counterparts against a vector of tract-level
covariatesXi, with regression coefficient β.35 We can apply the empirical Bayes procedures
in this paper to (Yi, σ

2
i ) and obtain an estimated posterior for θi. This estimated posterior

for the residualized parameter θi then implies an estimated posterior for the original param-
eter ϑi = θi + X ′

iβ, by adding back the fitted values X ′
iβ (Fay and Herriot, 1979). When

there are no covariates, ϑi = θi and Yi = Ỹi.
We consider 15 measures of economic mobility ϑi. Each ϑi is the population mean of

some outcome for individuals of some demographic subgroup growing up in tract i, whose
parents are at the 25th income percentile. We will consider three types of outcomes: (1) per-
centile rank of adult income (MEAN RANK) (2) an indicator for whether the individual has
incomes in the top 20 percentiles (TOP-20 PROBABILITY), and (3) an indicator for whether
the individual is incarcerated (INCARCERATION) for the following five demographic sub-
groups: (a) all individuals (POOLED), (b) white individuals, (c) white men, (d) Black indi-
viduals, and (e) Black men. Under these shorthands, the outcome we use in Section 2 is
TOP-20 PROBABILITY for Black individuals, while Bergman et al. (2024) consider MEAN

RANK POOLED.
The remainder of this section compares several empirical Bayes approaches on two ex-

ercises. In the first exercise, a calibrated simulation, we compare MSE performance of
various methods to the that of the oracle posterior. The second exercise is an empirical
34There are also adjustments to make the selected tracts geographically contiguous. See Bergman et al.
(2024) for details.
35Precisely speaking, let Xi be a vector of tract-level covariates. Let Ỹi be the raw Opportunity Atlas
estimates of a parameter ϑi, with accompanying standard errors σi. Let β be some vector of coefficients,
typically estimated by weighted least-squares of Yi on Xi. Let Yi = Ỹi − X ′

iβ and θi = ϑi − X ′
iβ be

the residuals. Since β is precisely estimated, we ignore its estimation noise. Then, the residualized objects
(Yi, θi) obey the Gaussian location model Yi | θi, σi ∼ N (θi, σ

2
i ). Figure OA5.10 contains empirical results

without residualizing against covariates. See Appendix OA5.2 for details on the covariates included.
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application to a scale-up of the exercise in Bergman et al. (2024). It uses the coupled boot-
strap (Section 3.4) to evaluate whether CLOSE-NPMLE selects more economically mobile
tracts than INDEPENDENT-GAUSS.

4.1. Calibrated simulation. To devise a data-generating process that does not impose the
location-scale assumption, we partition σ into vingtiles, fit a location-scale model within
each vingtile, and draw from the estimated model. The sampling process is detailed in
Appendix OA5.2. Since the location-scale model is only imposed within each vingtile, this
data-generating process does not impose (2.4).

On the simulated data, we then implement various empirical Bayes strategies. We
consider the feasible procedures NAIVE, INDEPENDENT-GAUSS, INDEPENDENT-NPMLE,
CLOSE-GAUSS, and CLOSE-NPMLE.36 Here, NAIVE sets θ̂i = Yi. Since we know the
ground truth data-generating process, we can also compute the ORACLE procedure, as well
as an ORACLE-GAUSS procedure that computes (2.11) with the true m0, s0.

Figure 3 plots the main results from this calibrated simulation, focusing on MSE perfor-
mance. For each method and each target variable, we display a relative measure of gain
in terms of mean-squared error. For each method, we calculate its squared error gain over
NAIVE normalized by the squared error gain of ORACLE over NAIVE. If we think of the
ORACLE–NAIVE difference as the total size of the “statistical pie,” then Figure 3 shows
how much of this pie each method captures.

The first four columns show the relative mean-squared error performance without resid-
ualizing against covariates, applying empirical Bayes methods directly on (Ỹi, σi). We
see that methods which assume prior independence perform worse than methods based on
CLOSE.37 Across the 15 variables, the median proportion of possible gains captured by
INDEPENDENT-GAUSS is only 30%. This value is 51% for INDEPENDENT-NPMLE, and
87% for CLOSE-NPMLE. Individually for each variable, among the first four columns,
36We note that none of the feasible procedures have access to the true projection coefficient β of Ỹi onto
Xi, which they must estimate by residualizing against covariates on the data. Additionally, we weigh the
estimation of m0 and s0 in INDEPENDENT-GAUSS by the precision 1/σ2

i , following Bergman et al. (2024).
37It may be surprising that INDEPENDENT-GAUSS can perform worse than NAIVE on MSE, since Gaussian
empirical Bayes typically has a connection to the James–Stein estimator, which dominates the NAIVE. We
note that, as in Bergman et al. (2024), when we estimate the prior mean and prior variance, we weight the
data with precision weights proportional to 1/σ2

i . When the independence between θ and σ holds, these
precision weights typically improve efficiency. However, the weighting does break the connection between
Gaussian empirical Bayes and James–Stein, and the resulting posterior mean does not always dominate the
NAIVE. To take an extreme example, if a particular observation has σi ≈ 0, then that observation is highly
influential for the prior mean estimate. If E[θi | σi] is very different for that observation than the other
observations, then the estimated prior mean is a bad target to shrink towards.
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Mean income rank

Mean income rank [white]

Mean income rank [Black]

Mean income rank [white male]

Mean income rank [Black male]

P(Income ranks in top 20)

P(Income ranks in top 20 | white)

P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)

P(Income ranks in top 20 | Black male)

Incarceration

Incarceration [white]

Incarceration [Black]

Incarceration [white male]

Incarceration [Black male]

Column median

-4 25 49 50 85 88 91 91 91

55 60 66 66 87 90 94 95 95

30 61 87 87 82 88 93 94 93

63 69 74 75 89 92 93 94 95

32 54 86 87 83 86 93 93 94

-160 9 67 67 57 81 91 93 93

31 51 65 65 75 80 94 97 95

-6 24 93 95 46 53 95 97 97

23 46 71 72 70 76 90 94 94

-8 21 94 96 37 45 95 97 97

-5 32 68 68 51 59 88 95 91

61 72 90 96 74 81 91 93 97

42 51 94 95 48 52 96 98 97

43 53 92 96 60 64 93 95 98

25 42 90 90 42 49 96 99 96

30 51 86 87 70 80 93 95 95

What % of Naive-to-Oracle MSE gain do we capture?

Notes. Each column is an empirical Bayes strategy that we consider, and each row is a
different definition of ϑi. The table shows relative performance, defined as the squared
error improvement over NAIVE, normalized as a percentage of the improvement of ORA-
CLE over NAIVE. The last row shows the column median. Since we rely on Monte Carlo
approximations of ORACLE, the resulting Monte Carlo error causes CLOSE-NPMLE to
outperform ORACLE in the top right. Results are averaged over 1,000 Monte Carlo draws.
For absolute, un-normalized performance of INDEPENDENT-GAUSS, INDEPENDENT-
NPMLE, CLOSE-NPMLE, and ORACLE, see Figure OA5.9. □

FIGURE 3. Table of relative squared error Bayes risk for various empirical
Bayes approaches

CLOSE-NPMLE uniformly dominates all three other methods. This indicates that the stan-
dard error σi contains much of the predictive power of the covariates, and using that infor-
mation can be very helpful when the researcher does not have rich covariate information.

The next five columns show performance when the methods do have access to covariate
information. For MEAN RANK, after covariate residualization, there appears to be little
dependence between θi and σi. INDEPENDENT-NPMLE and CLOSE-NPMLE perform sim-
ilarly, capturing almost all of the available gains. Both slightly outperform the Gaussian
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methods for MEAN RANK.38 For the other two outcome variables, TOP-20 PROBABILITY

and INCARCERATION, the dependence between θi and σi is stronger, and CLOSE-based
methods display substantial improvements over methods that assume prior independence.
CLOSE-NPMLE achieves near-oracle performance across the different definitions of θi and
uniformly dominates all other feasible methods.

So far, we have tested the methods in a synthetic environment set up to imitate the real
data. Next, we turn to an empirical application that uses the coupled bootstrap (Section 3.4)
estimator of performance.

4.2. Validation exercise via coupled bootstrap. Our second empirical exercise uses the
coupled bootstrap described in Section 3.4 for the policy problem in Bergman et al. (2024).
Viewing the policy problem in Bergman et al. (2024) as TOP-m SELECTION, can CLOSE-
NPMLE make better selections?

Specifically, we imagine scaling up Bergman et al. (2024)’s exercise and perform empir-
ical Bayes procedures for all Census tracts in the largest 20 Commuting Zones. We then
select the top third of tracts within each Commuting Zone, according to empirical Bayesian
posterior means for ϑi. Additionally, to faithfully mimic Bergman et al. (2024), here we
perform all empirical Bayes procedures within Commuting Zone. That is, for each of the 20
Commuting Zones that we consider, we execute all empirical Bayes methods—including
the residualization by covariates—with only Ỹi, σi of tracts within the Commuting Zone.39

Throughout, we choose ω to emulate a 90-10 train-test split on the micro-data.
Figure 4(a) shows the estimated performance gap between a given empirical Bayes

method and NAIVE as the x-position of the dots. According to these estimates, CLOSE-
NPMLE generally improves over INDEPENDENT-GAUSS.40

For the MEAN RANK variables, using CLOSE-NPMLE generates substantial gains for mo-
bility measures for Black individuals (0.8 percentile ranks for Black men and 0.5 percentile
ranks for Black individuals). To put these gains in dollar terms, at the income level for ex-
periment participants in Bergman et al. (2024), an incremental percentile rank amounts to
38Appendix OA5.4 contains an alternative data-generating process in which the true prior is Weibull,
which has thicker tails and higher skewness. Under such a scenario, NPMLE-based methods substantially
outperform methods assuming Gaussian priors.
39Appendix OA5.6 contains results where we perform empirical Bayes pooling over all Commuting Zones
and select the top third within each Commuting Zone. We obtain very similar results. Appendix OA5.6 also
contains results without residualizing against covariates, and INDEPENDENT-GAUSS performs very poorly in
that setting. Appendix OA5.5 contains results on estimating ϑi in MSE (Decision Problem 1) in this context.
40For MEAN RANK POOLED, CLOSE-NPMLE is worse by 0.012 percentile ranks, and CLOSE-NPMLE is worse
by 0.058 percentile ranks for MEAN RANK for white men. In either case, the estimated disimprovement is
small.
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(a) Estimated performance difference relative to NAIVE

2 1 0 1 2 3 4 5
Performance difference relative to screening on raw estimates (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.6

38.738.2

49.649.6

35.534.7

18.618.5

23.523.2

10.17.1

22.521.5

9.36.0

4.44.0

3.42.4

7.95.8

6.04.0

15.412.1

CLOSE-NPMLE
Independent Gaussian
Naive (zero)

(b) Estimated performance difference relative to picking uniformly at random

0 1 2 3 4 5 6 7 8
Performance difference relative to picking uniformly at random (percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

47.447.4

51.651.6

38.738.2

49.649.6

35.534.7

18.618.5

23.523.2

10.17.1

22.521.5

9.36.0

4.44.0

3.42.4

7.95.8

6.04.0

15.412.1

CLOSE-NPMLE
Independent Gaussian
Naive
[0,  SD( )]

Notes. These figures show the estimated performance of various decision rules over 1,000
draws of coupled bootstrap. Performance is measured as the mean ϑi among selected Cen-
sus tracts. All decision rules select the top third of Census tracts within each Commuting
Zone. Figure (a) plots the estimated performance gap relative to NAIVE, where we annotate
with the estimated performance for CLOSE-NPMLE and INDEPENDENT-GAUSS. Figure (b)
plots the estimated performance gap relative to picking uniformly at random; we continue
to annotate with the estimated performance. The shaded regions in Figure (b) have lengths
equal to the unconditional standard deviation of the underlying parameter ϑ. □

FIGURE 4. Performance of decision rules in top-m selection exercise

about $1,000 per annum. Thus, the estimated gain in terms of mean income rank is roughly
$500–800. For the other two outcomes, TOP-20 PROBABILITY and INCARCERATION,41 the
gains are even more sizable, especially for Black individuals.These gains are as high as 2–3
percentage points on average.
41We consider a policy objective of encouraging people to move out of high-incarceration areas.
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Bergman et al. (2024) select tracts based on MEAN RANK POOLED. For this measure,
there is little additional gain from using CLOSE-NPMLE, at least when residualized against
sufficiently rich covariates. Nevertheless, since about half of the trial participants are Black
in Bergman et al. (2024)’s setting, one might consider providing more personalized recom-
mendations by targeting measures of economic mobility for finer demographic subgroups.42

If we select tracts based on these demographic-specific measures, CLOSE-NPMLE then pro-
vides economically significant improvements: Appendix OA5.7 shows that screening with
mobility measures for Black individuals outperforms screening mobility for Black individ-
uals with the POOLED estimate.

We can think of the performance gap between INDEPENDENT-GAUSS and NAIVE as the
value of basic empirical Bayes. If practitioners find using the standard empirical Bayes
method a worthwhile investment over screening on the raw estimates directly, perhaps they
reveal that the value of basic empirical Bayes is economically significant. Across the 15
measures, the improvement of CLOSE-NPMLE over INDEPENDENT-GAUSS is on median
320% of the value of basic empirical Bayes, where the median is attained by MEAN RANK

for Black individuals. Thus, the additional gain of CLOSE-NPMLE over INDEPENDENT-
GAUSS is substantial compared to the value of basic empirical Bayes. If the latter is eco-
nomically significant, then it is similarly worthwhile to use CLOSE-NPMLE instead.

For 3 of the 15 measures, including our running example, INDEPENDENT-GAUSS in fact
underperforms NAIVE, rendering the estimated value of basic empirical Bayes negative.
As a result, we consider a different normalization in Figure 4(b). Figure 4(b) plots the
difference between a given method’s performance and the estimated mean ϑi for a given
measure. Analogous to the value of basic empirical Bayes, we think of the difference
between INDEPENDENT-GAUSS’s performance and the estimated mean ϑi as the value of
data, since choosing the tracts randomly in the absence of data has expected performance
equal to mean ϑi. If the mobility estimates are at all useful for decision-making, the value
of data must be economically significant.

Across the 15 measures considered, the gain of CLOSE-NPMLE is on median 25% of the
value of data. For six of the 15 measures, the gain of CLOSE-NPMLE exceeds the value of
data. For MEAN RANK for Black individuals, the incremental value of CLOSE-NPMLE over
INDEPENDENT-GAUSS is about 15% of the value of data, which is sizable. These relative
gains are more substantial for the binarized outcome variables TOP-20 PROBABILITY and
42When such personalized policies face legal and ethical barriers, Aloni and Avivi (2023) propose a minimax
regret-type objective that takes the worst case over a customer’s demographic identity.
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INCARCERATION. For our running example (TOP-20 PROBABILITY for Black individu-
als), this incremental gain of CLOSE-NPMLE is 210% the value of data. That is, relative to
choosing randomly, CLOSE-NPMLE delivers gains 3.1 times that of INDEPENDENT-GAUSS.

5. Conclusion

This paper studies empirical Bayes methods in the heteroskedastic Gaussian location
model. We argue that prior independence—the assumption that the precision of estimates
does not predict the true parameter—is theoretically questionable and often empirically
rejected. Empirical Bayes shrinkage methods that rely on prior independence can gener-
ate worse posterior mean estimates, and screening decisions based on these estimates can
suffer as a result. They may even be worse than the selection decisions made with the
unshrunk estimates directly.

Instead of treating θi as independent from σi, we model its conditional distribution as
a location-scale family. This assumption leads naturally to a family of empirical Bayes
strategies that we call CLOSE. We prove that CLOSE-NPMLE attains minimax-optimal rates
in Bayes regret, extending previous theoretical results. That is, it approximates infeasible
oracle Bayes posterior means as competently as statistically possible. Our main theoretical
results are in terms of squared error, which we further connect to ranking-type decision
problems in Bergman et al. (2024). Additionally, we show that an idealized version of
CLOSE-NPMLE is robust, with finite worst-case Bayes risk. Lastly, we introduce a simple
validation procedure based on coupled bootstrap (Oliveira et al., 2021) and highlight its
utility for practitioners choosing among empirical Bayes shrinkage methods.

Simulation and validation exercises demonstrate that CLOSE-NPMLE generates sizable
gains relative to the standard parametric empirical Bayes shrinkage method. Across cal-
ibrated simulations, CLOSE-NPMLE attains close-to-oracle mean-squared error performance.
In a hypothetical, scaled-up version of Bergman et al. (2024), across a wide range of eco-
nomic mobility measures, CLOSE-NPMLE consistently selects more mobile tracts than does
the standard empirical Bayes method. The gains in the average economic mobility among
selected tracts, relative to the standard empirical Bayes procedure, are often comparable
to—or even multiples of—the value of basic empirical Bayes. These gains are even com-
parable to the benefit of using standard empirical Bayes procedures over ignoring the data.

Appendix A. Proof outline for Theorem 1

The proof of Theorem 1 depends on numerous results deferred to the Online Appendix.
An outline is stated here.
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To prove Theorem 1, we consider the events An,A
C
n separately. On AC

n , we use the fact
that the empirical Bayes posterior means θ̂i and the oracle posterior means θ∗i are no farther
than the range of the data maxYi −minYi, which is logarithmic in n under Assumption 2
(Lemma OA3.2). Since AC

n is assumed to be unlikely, regret on AC
n is sufficiently small.

The bulk of the argument controls regret on An, stated separately in the following theo-
rem (Theorem A.1), whose proof is deferred to Appendix OA3. Fix sequences ∆n > 0 and
Mn > 0. Define the following “good” event which we use in Theorem A.1:

An =

{
∥η̂ − η∥∞ ≡ max(∥m̂−m0∥∞, ∥ŝ− s0∥∞) ≤ ∆n, Zn ≡ max

i∈[n]
(|Zi| ∨ 1) ≤Mn

}
.

(A.1)
On the event An, the nuisance estimates η̂ are good, and the data Zi are not too large. Note
that, with ∆n = C1n

− p
2p+1 (log n)β0 ,

An = An(C1) ∩
{
Zn ≤Mn

}
,

where An is the event in (3.5).

Theorem A.1. Suppose Assumptions 1 to 4 hold. Fix some β > 0, C1 > 0, there exists
choices of constants CH,2 such that, for ∆n = C1n

−p/(2p+1)(log n)β , Mn = CH,2(log n)
1/α,

and corresponding An,

E
[
MSERegretn(Ĝn, η̂)1(An)

]
≲H n− 2p

2p+1 (log n)
2+α
α

+3+2β.

A.1. Step 1: convert regret on θi to regret on τi. To prove Theorem A.1, note that the
empirical Bayes posterior mean is of the form

θ̂i,Ĝn,η̂ = m̂(σi) + ŝ(σi) · τ̂i,Ĝn,η̂

where τ̂i,Ĝn,η̂ denotes the posterior mean of τi | Ẑi, ν̂i, where τi ∼ Ĝn and Ẑi | τi, ν̂i ∼
N (τi, ν̂

2
i ). On the event An, m̂, ŝ are close to m0, s0, and thus controlling MSERegretn

amounts to controlling MSE on τ ’s: E
[
(τ ∗i − τ̂i,Ĝn,η̂)

2
]
, where τ ∗i = τ̂i,G0,η0 is the oracle

posterior mean for τi.
To do so, we adapt the argument in Soloff et al. (2021) and Jiang (2020). To introduce

this argument, recall that ψi denotes the log-likelihood in Assumption 1 and define

Subn(G) =

(
1

n

n∑
i=1

ψi(Zi, η0, G)−
1

n

n∑
i=1

ψi(Zi, η0, G0)

)
+

(A.2)
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as the log-likelihood suboptimality of G against the true distribution G0, evaluated on the
unobserved transformed data Zi, νi. For generic G and ν > 0, define

fG,ν(z) =

∫ ∞

−∞
φ

(
z − τ
ν

)
1

ν
G(dτ). (A.3)

to be the marginal density of some mixed Gaussian deviate Z ∼ N (0, ν2) ⋆ G. As a short-
hand, we write fi,G = fG,νi(Zi) and f ′

i,G = f ′
G,νi

(Zi). Let the average squared Hellinger
distance be

h
2
(fG1,·, fG2,·) =

1

n

n∑
i=1

h2 (fG1,νi , fG2,νi) . (A.4)

Loosely speaking, Soloff et al. (2021), following Jiang and Zhang (2009), show that

(1) With high probability, all approximate maximizers of the likelihood have low aver-
age Hellinger distance:

P
[
There exists G where Subn(G) < C1δ

2
n but h

2
(fG,·, fG0,·) > C2δ

2
n

]
<

1

n
(A.5)

for some rate function δ2n = Õ(1/n).
(2) For a given G, E[(τ ∗i − τ̂i,G,η0)2] = Õ

(
h
2
(fG,·, fG0,·)

)
where τ̂i,G,η0 = EG,νi [τ | Zi]

are posterior means for τi under τi ∼ G and Zi | τi, νi ∼ N (τi, ν
2
i ).

Therefore, an approximate maximizer Ĝ∗
n of the likelihood Subn(G) should have low av-

erage Hellinger distance to G0 and thus should output similar posterior means.43

A.2. Step 2: show Ĝn is an approximate maximizer of true likelihood. To use this
argument for Theorem A.1, a key challenge is that Ĝn only maximizes the approximate
likelihood 1

n

∑
i ψi(Zi, η̂, G), which only has η̂ ≈ η0 on An, but η̂ ̸= η0. A key result is an

oracle inequality for the likelihood (Corollary SM6.1), where, loosely speaking,

P
[
An, Subn(Ĝn) ≳H εn

]
= O(1/n) (A.6)

for some εn = Õ
(
n−2p/(2p+1) + n−p/(2p+1)h(fĜn,·, fG0,·)

)
. This result states that the like-

lihood suboptimality of the feasible NPMLE Ĝn cannot be much higher than its average
Hellinger distance to G0.

The bound (A.6) is a refinement of a simple linearization argument applied to η 7→
1
n

∑n
i=1 ψi(Zi, η, Ĝn). Heuristically speaking, a first-order Taylor expansion yields

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn)−
1

n

n∑
i=1

∂ψi
∂η

∣∣∣∣
η=η0

(η̂i − η0i) ≈
1

n

n∑
i=1

ψi(Zi, η0, Ĝn)

43Subjected to additional empirical process arguments that accommodate the fact that Ĝ∗
n is estimated.
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where 1
n

∑n
i=1 ψi(Zi, η̂, Ĝn) is large by definition of Ĝn. Thus, the right-hand side would

be large following a bound on ∣∣∣∣∣ 1n
n∑
i=1

∂ψi
∂η

∣∣∣∣
η=η0

(η̂i − η0i)

∣∣∣∣∣ .
A naive bound on this term, using only the fact that |η̂i − η0i| ≤ ∥η̂ − η0∥∞, would lead to
a suboptimal regret rate of Õ(n−p/(2p+1)). Our more refined analysis additionally leverages
the fact that

E

[
∂ψi(Z, η,G0)

∂η

∣∣∣∣
η=η0

]
= 0,

and thus the derivative ∂ψi
∂η

is sufficiently small if Ĝn ≈ G0.

A.3. Step 3: adapt Hellinger distance bound. Corollary SM6.1 makes sure that Ĝn

probably achieves high likelihood, but the bound depends on h
2
. Since (A.5) uses a likeli-

hood bound for G to control h
2
, we need to additionally finesse (A.5) to accommodate the

fact that the likelihood bound depends on h
2
.

Second, we adapt (A.5) to show that, loosely speaking, with high probability Ĝn has low
average Hellinger distance to G0 (Corollary OA3.1):

P
[
An, h

2
(fĜn,·, fG0,·) ≳H n−p/(2p+1)(log n)C

]
= Õ(1/n).

Thus, this allows us to show that E[(τ ∗i − τ̂i,G,η0)21(An)] is small, after additional empirical
process arguments in Appendix OA3.

This section concludes with a proof for Theorem 1 given these results.

Proof of Theorem 1. Let ∆n = C1,Hn
− p

2p+1 (log n)β0 and Mn = C(log n)1/α for some C
chosen by our application of Theorem A.1. Decompose

E[MSERegretn(Ĝn, η̂)]

= E[MSERegretn(Ĝn, η̂)1(An)] + E[MSERegretn(Ĝn, η̂)1(A
C
n ∪

{
Zn > Mn

}
)]

≤ E[MSERegretn(Ĝn, η̂)1(An)] + E[MSERegretn(Ĝn, η̂)1(A
C
n )]

+ E[MSERegretn(Ĝn, η̂)1(Zn > Mn)]

≲H n− 2p
2p+1 (log n)

2+α
α

+3+2β0 +
2

n
(log n)2/α (Theorem A.1 and Lemma OA3.2)

≲H n− 2p
2p+1 (log n)

2+α
α

+3+2β0 ,

where our application of Lemma OA3.2 uses the assumption that P(An(C1,H)
C) = P(∥η̂−

η∥∞ > ∆n) ≤ 1
n2 . □

36



Appendix B. Proofs of other results stated in the main text

Proof of Theorem 2. We consider a specific choice of G0, σ1:n, and s0. Namely, suppose
G0 ∼ N (0, 1), σ1:n are equally spaced in [σℓ, σu], and s0(σ) = (sℓ+su)/2 ≡ s0 is constant.
Under our assumptions, the oracle posterior means θ∗i are equal to

θ∗i =
s20

s20 + σ2
i

Yi +
σ2
i

s20 + σ2
i

m0(σi)

For a given vector of estimates θ̃1:n, we can form m̂(σi) =
s20+σ

2
i

σ2
i

(
θ̃i − s20

s20+σ
2
i
Yi

)
. Note

that, for this choice,

E

[
1

n

n∑
i=1

(θ̃i − θ∗i )2
]
≳σℓ,su E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
.

Therefore, the minimax rate must be lower bounded by the minimax rate of estimating m0

at σ1:n, where the right-hand side takes the infimum over all estimators of m0 with data
(Yi, σi):

inf
θ̂1:n

sup
σ1:n,P0

E

[
1

n

n∑
i=1

(θ̂i − θi)2 − (θ∗i − θi)2
]
≳σℓ,su inf

m̂
sup
m0

E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
.

Using classical minimax results, Lemma SM9.1 shows that the right-hand side is lower
bounded by n−2p/(2p+1), which completes the proof. □

Proof of Theorem 3. (1) By the law of iterated expectations, since θ̂i, θ∗i are both mea-
surable with respect to the data,44

E[UMRegretn] = E

[
1

n

n∑
i=1

{
1(θ∗i ≥ 0)− 1(θ̂i ≥ 0)

}
θ∗i

]
Note that, for 1(θ∗i ≥ 0) − 1(θ̂i ≥ 0) to be nonzero, 0 is between θ̂i and θ∗i . Hence,
|θ∗i | ≤ |θ∗i − θi| and thus by Jensen’s inequality

E[UMRegretn] ≤ E

[
1

n

n∑
i=1

|θ∗i − θi|

]
≤ E

[
1

n

n∑
i=1

(θ∗i − θi)2
]1/2

.

44For a randomized decision rule θ̂i that is additionally measurable with respect to some U independent of
(θi, Yi, σi)

n
i=1, this step continues to hold since E[θi | U, Yi, σi] = θ∗i .

37



(2) Let J ∗ collect the indices of the top-m entries of θ∗i and let Ĵ collect the indices of
the top-m entries of θ̂i. Then, by law of iterated expectations,

m

n
E[TopRegret(m)

n ] =
1

n

n∑
i=1

E
[{
1(i ∈ J ∗)− 1(i ∈ Ĵ )

}
θ∗i

]
.

Observe that this can be controlled by applying Proposition B.1, where wi = 0 for all
i ≤ n−m and wi = 1 for all i > n−m. In this case, ∥w∥ =

√
m. Hence,

m

n
E[TopRegret(m)

n ] ≤ 2

√
m

n
E

( 1

n

n∑
i=1

(θ̂i − θ∗i )2
)1/2

 ≤ 2

√
m

n

(
E

[
1

n

n∑
i=1

(θ̂i − θ∗i )2
])1/2

.

Divide through by m/n to obtain the result. □

Proposition B.1. Suppose σ(·) is a permutation such that θ̂σ(n) ≥ · · · ≥ θ̂σ(1). Then

1

n

n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ
∗
σ(i) ≤

2∥w∥2√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2.

Proof. We compute

1

n

n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ
∗
σ(i) ≤

∣∣∣∣∣ 1n
n∑
i=1

wiθ
∗
(i) −

1

n

n∑
i=1

wiθ̂σ(i)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

wi(θ̂σ(i) − θ∗σ(i))

∣∣∣∣∣
≤ ∥w∥2√

n
·

(
1

n

n∑
i=1

(θ∗(i) − θ̂σ(i))2
)1/2

+
∥w∥2√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2

≤ 2
∥w∥2√
n

√√√√ 1

n

n∑
i=1

(θ̂i − θ∗i )2.

The last step follows from the observation that
∑n

i=1(θ
∗
(i)− θ̂σ(i))2 ≤

∑n
i=1(θ̂i−θ∗i )2,which

is true by the rearrangement inequality.45 □

Remark B.1 (Mover interpretation of Theorem 3). Recall that we can think of TOP-m SE-
LECTION as the decision problem in Bergman et al. (2024). The utility function represents
the expected mobility of a mover, assuming that the mover moves randomly into one of the
high mobility Census tracts. Our proof of Theorem 3 allows for a slightly more general
decision problem. Suppose the decision now is to provide a full ranking of Census tracts
for potential movers and maximize the expected mobility for a mover. Suppose that the
45That is, for all real numbers x1 ≤ · · · ≤ xn, y1 ≤ · · · ≤ yn, we have that

∑
i xiyπ(i) ≤

∑
i xiyi for any

permutation π(·).
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probability that a mover moves to a tract depends decreasingly and solely on the tract’s
rank. To be more concrete, suppose the mover has probability π1 of moving to the highest-
ranked tract, π2 to the second-highest, and so forth. Then, with the same argument, the

corresponding regret is dominated by 2
√
n
∑n

i=1 π
2
i ·
(
E
[
1
n

∑n
i=1(θ̂i − θ∗i )2

])1/2
, which

generalizes (3.8). ■

Proof of Theorem 4. Note that θ̂i,G∗
0,η0

= s0(σi)τ̂i,G∗
0,η0

+m0(σi), where τ ∗i,G,η is the poste-
rior mean for τi under (G, η), and θi = s0(σi)τi +m0(σi). Thus,

1

n

n∑
i=1

(θ̂i − θi)2 =
1

n

n∑
i=1

s20(σi)(τ̂i,G∗
0,η0
− τi)2.

Chen (2023) shows that

RB ≡ sup
{
E[(τ̂i,G∗

0,η0
− τi)2] : νi > 0, G(i), G

∗
0 has zero mean and unit variance

}
is finite. Taking the expected value with respect to P0 ∈ P(m0, s0) and apply the bound
RB, we have that

E

[
1

n

n∑
i=1

(θ̂i − θi)2
]
≤ RB

1

n

n∑
i=1

s20(σi).

Note that when P0 is such that θi | σi ∼ N (m0(σi), s
2
0(σi)), the risk of any procedure

exceeds the Bayes risk (achieved by (2.11)). Hence, the Bayes risk under this P0 lower
bounds the minimax risk

1

n

n∑
i=1

σ2
i

σ2
i + s20(σi)

s20(σi) ≤ inf
θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
.

Note that, for some cσℓ,su > 0,

1

n

n∑
i=1

σ2
i

σ2
i + s20(σi)

s20(σi) =
1

n

n∑
i=1

1

1 + s20(σi)/σ
2
i

s20(σi) ≥ cρ
1

n

n∑
i=1

s20(σi).

Hence

E

[
1

n

n∑
i=1

(θ̂i − θi)2
]
≤ RB

cρ

1

n

n∑
i=1

σ2
i

σ2
i + s20(σi)

s20(σi) ≤ Cρ inf
θ̂1:n

sup
P0∈P(m0,s0)

EP0

[
1

n

n∑
i=1

(θ̂i − θi)2
]
.

□

Proof of Proposition 1. These are straightforward calculations of the expectation. Since
every expectation and variance is conditional on θ1:n, Y

(1)
1:n , σ1:n,(1), σ1:n,(2), we write E[· |

F ] and Var(· | F) without ambiguity.
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(1) (Decision Problem 1) The unbiased estimation follows directly from the calculation

E
[
(Y

(2)
i − δi(Y (1)

1:n ))
2 | F

]
= (θ

(2)
i − δi(Y

(1)
1:n ))

2 + σ2
i,(2)

The conditional variance statement holds by definition.
(2) (Decision Problem 2) The unbiased estimation follows directly from the calculation

E
[
δi(Y

(1)
1:n )Y

(2)
i | F

]
= δi(Y

(1)
1:n )θi.

The conditional variance statement follows from

Var
[
δi(Y

(1)
1:n )Y

(2)
i | F

]
= δi(Y

(1)
1:n )σ

2
1:n,(2).

(3) (Decision Problem 3) The loss function for Decision Problem 3 is the same as that
for Decision Problem 2 up to a factor of n/m. Since we condition on Y (1)

1:n , the argument is
thus analogous. □
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Part 1 Proof of Theorem 1

Appendix OA3. Review of notation and proof of Lemma OA3.2 and Theorem A.1

We recall some notation in the main text, and introduce additional notation. Recall that
we assume n ≥ 7. We observe (Yi, σi)

n
i=1, (Yi, σi) ∈ R× R>0 such that

Yi | (θi, σi) ∼ N (θi, σ
2
i )

and (Yi, θi, σi) are mutually independent. Assume that the joint distribution for (θi, σi)

takes the location-scale form (2.4)

θi | (σ1, . . . , σn) ∼ G0

(
θi −m0(σi)

s0(σi)

)
.

Define shorthands m0i = m0(σi) and s0i = s0(σi). Define the transformed parameter
τi =

θi−m0i

s0i
, the transformed data Zi = Yi−m0i

s0i
, and the transformed variance ν2i =

σ2
i

s20i
. By

assumption,
Zi | (τi, νi) ∼ N (τi, ν

2
i ) τi | ν1, . . . , νn

i.i.d.∼ G0.

Let η̂ = (m̂, ŝ) denote estimates ofm0 and s0. Likewise, let η̂i = (m̂i, ŝi) = (m̂(σi), ŝ(σi)).
For a given η̂, define

Ẑi = Ẑi(η̂) = Ẑi(Zi, η̂) =
Yi − m̂i

ŝi
=
s0iZi +m0i − m̂i

ŝi
ν̂2i = ν̂2i (η̂) =

σ2
i

ŝ2i
.

We will condition on σ1:n throughout, and hence we treat them as fixed. Let νℓ, νu be the
corresponding bounds on νi = σi

s0(σi)
, implied by Assumption 3.

For generic values η = (m, s) and distribution G, define the log-likelihood function

ψi(z, η,G) = log

∫ ∞

−∞
φ

(
Ẑi(η)− τ
ν̂i(η)

)
G(dτ) = log

(
ν̂i(η) · fG,ν̂i(η)(Ẑi(η))

)
,

where we recall fG,ν from (A.3).
Fix some generic G and η = (m, s). The empirical Bayes posterior mean ignores the

fact that G, η are potentially estimated. The posterior mean for θi = siτ +mi is

θ̂i,G,η ≡ mi + siEG,ν̂i(η)[τ | Ẑi(η)].

Here, we define EG,ν [h(τ, Z) | z] as the function of z that equals the posterior mean for
h(τ, Z) under the data-generating model τ ∼ G and Z | τ ∼ N (τ, ν). Explicitly,

EG,ν [h(τ, Z) | z] =
1

fG,ν(z)

∫
h(τ, z)φ

(
z − τ
ν

)
1

ν
G(dτ).
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Explicitly, by Tweedie’s formula,

EG,ν̂i(η)[τi | Ẑi(η)] = Ẑi(η) + ν̂2i (η)
f ′
G,ν̂i(η)

(Ẑi(η))

fG,ν̂i(η)(Ẑi(η))
.

Hence, since Ẑi(η) = Yi−mi
si

,

θ̂i,G,η = Yi + siν̂
2
i (η)

f ′
G,ν̂i(η)

(Ẑi(η))

fG,ν̂i(η)(Ẑi(η))
.

Define θ∗i = θ̂i,G0,η0 as the oracle Bayesian’s posterior mean. Fix some positive number
ρ > 0, define a regularized posterior mean as

θ̂i,G,η,ρ = Yi + siν̂
2
i (η)

f ′
G,ν̂i(η)

(Ẑi(η))

fG,ν̂i(η)(Ẑi(η)) ∨
ρ

ν̂i(η)

(OA3.1)

and define θ∗i,ρ = θ̂i,G0,η0,ρ correspondingly. Similarly, we define

τ̂i,G,η,ρ = Ẑi(η) + ν̂2i (η)
f ′
G,ν̂i(η)

(Ẑi(η))

fG,ν̂i(η)(Ẑi(η)) ∨
ρ

ν̂i(η)

τ ∗i,ρ = τ̂i,G0,η0,ρ (OA3.2)

Lastly, we will also define

φ+(ρ) =

√
log

1

2πρ2
ρ ∈ (0, (2π)−1/2) (OA3.3)

so that φ(φ+(ρ)) = ρ. Observe that φ+(ρ) ≲
√
log(1/ρ).

Recall the event An in (A.1) as well as Zn. Many of the following statements are true
for An defined with generic ∆n,Mn. However, to obtain our rate expression in the end, we
shall set ∆n,Mn to be of the following form:

∆n = CHn
− p

2p+1 (log n)β and Mn = (CH + 1)(C−1
2,H log n)1/α. (OA3.4)

Here, CH is to be chosen, and C2,H is some constant determined by Theorem SM6.1. Cor-
respondingly, we also have a choice

ρn =
1

n3
e−CH,ρM

2
n∆n ∧ 1

e
√
2π
, (OA3.5)

where the constant CH,ρ is chosen to satisfy the following result, proved in Appendix SM6.

Lemma OA3.1. Suppose |Zn| = maxi∈[n] |Zi| ∨ 1 ≤ Mn, ∥ŝ − s0∥∞ ≤ ∆n, and ∥m̂ −
m0∥∞ ≤ ∆n. Let Ĝn satisfy Assumption 1. Then, under Assumption SM6.1,46

(1) |Ẑi ∨ 1| ≲H Mn

46This assumption is satisfied with our choices in (OA3.4).
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(2) There exists CH such that with ρn = 1
n3 exp (−CHM

2
n∆n)∧ 1

e
√
2π

, fĜn,νi(Zi) ≥
ρn
νi
.

(3) The choice of ρn satisfies log(1/ρn) ≍H log n, φ+(ρn) ≍H
√
log n, and ρn ≲H

n−3.

We now state and prove Lemma OA3.2 and Theorem A.1, which are crucial claims in
the proof of Theorem 1. The first claim, Lemma OA3.2, controls regret on the event AC

n .

Lemma OA3.2. Under Assumptions 1 to 4, for β ≥ 0, suppose ∆n,Mn are of the form
(OA3.4) such that P(Zn > Mn) ≤ n−2, we can decompose

E[MSERegretn(Ĝn, η̂)1(∥η̂ − η∥∞ > ∆n)] ≲H P(∥η̂ − η∥∞ > ∆n)
1/2(log n)2/α

E[MSERegretn(Ĝn, η̂)1(Zn > Mn)] ≲H
1

n
(log n)2/α.

Proof. Observe that, for an event A on the data Z1:n,

E
[
MSERegretn(Ĝn, η̂)1(A)

]
= E

[
1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2
1(A)

]

≤ E

( 1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2

)2
1/2

P(A)1/2

by Cauchy–Schwarz. A crude bound (Lemma OA3.6) shows that, almost surely,[
1

n

n∑
i=1

(θ̂i,Ĝ,η̂ − θ
∗
i )

2

]2
≲H Z

4

n.

Apply Lemma OA3.7 to find that E[Z4

n] ≲H (log n)4/α. This proves both claims. □

The main theorem of this part in the Online Appendix is stated and proved in the fol-
lowing section. It characterizes regret behavior on the event An, for ∆n,Mn chosen as in
(OA3.4).

OA3.1 Proof of Theorem A.1. We first state a result that is key to our remaining argu-
ments, which we verify in the Supplementary Material (Appendix SM7).

Corollary OA3.1. Assume Assumptions 1 to 4 hold and suppose ∆n,Mn take the form
(OA3.4). Define the rate function

δn = n−p/(2p+1)(log n)
2+α
2α

+β. (OA3.6)
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Then, there exists some constant BH, depending solely on C∗
H in Corollary SM6.1, β, and

p, νℓ, νu such that

P
[
An, h(fĜn,·, fG0,·) > BHδn

]
≤
(
log log n

log 2
+ 10

)
1

n
.

Theorem A.1. Suppose Assumptions 1 to 4 hold. Fix some β > 0, C1 > 0, there exists
choices of constants CH,2 such that, for ∆n = C1n

−p/(2p+1)(log n)β , Mn = CH,2(log n)
1/α,

and corresponding An,

E
[
MSERegretn(Ĝn, η̂)1(An)

]
≲H n− 2p

2p+1 (log n)
2+α
α

+3+2β.

Proof. We choose Mn to be of the form (OA3.4). Note that we can decompose

MSERegretn(G, η) =
1

n

n∑
i=1

(θ̂i,G,η − θi)2 −
1

n

n∑
i=1

(θ∗i − θi)2

=
1

n

n∑
i=1

(θ̂i,G,η − θ∗i )2 +
2

n

n∑
i=1

(θ∗i − θi)(θ̂i,G,η − θ∗i ) (OA3.7)

Note that the second term in the decomposition (OA3.7), truncated to An, is mean zero:

E

[
1(An)

2

n

n∑
i=1

(θ∗i − θi)(θ̂i,Ĝn,η̂ − θ
∗
i )

]
= 0,

since E[(θ∗i − θi) | Y1, . . . , Yn] = 0. Thus, we can focus on

E[MSERegretn(Ĝn, η̂)1(An)] = E

[
1(An)

n

n∑
i=1

(θ̂i,Ĝn,η̂ − θ
∗
i )

2

]
≡ 1

n
E[1(An)∥θ̂Ĝn,η̂−θ

∗∥2],

(OA3.8)
where we let θ̂Ĝn,η̂ denote the vector of estimated posterior means and let θ∗ denote the
corresponding vector of oracle posterior means. Let the subscript ρn denote a vector of
regularized posterior means as in (OA3.1). Here, we set ρn as in (OA3.5). Thus, we may
further decompose by triangle inequality:

∥θ̂Ĝn,η̂ − θ
∗∥ ≤ ∥θ̂Ĝn,η̂ − θ̂Ĝn,η0∥+ ∥θ̂Ĝn,η0 − θ̂Ĝn,η0,ρn∥+ ∥θ̂Ĝn,η0,ρn − θ

∗
ρn∥+ ∥θ

∗
ρn − θ

∗∥.

We denote each term in the decomposition of (OA3.8) by ξ1, . . . , ξ4:

ξ1 =
1(An)

n
∥θ̂Ĝn,η̂ − θ̂Ĝn,η0∥

2 (OA3.9)

ξ2 =
1(An)

n
∥θ̂Ĝn,η0 − θ̂Ĝn,η0,ρn∥

2 (OA3.10)

ξ3 =
1(An)

n
∥θ̂Ĝn,η0,ρn − θ

∗
ρn∥

2 (OA3.11)
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ξ4 =
1(An)

n
∥θ∗ρn − θ

∗∥2. (OA3.12)

We have that

(OA3.8) ≤ 4(Eξ1 + Eξ2 + Eξ3 + Eξ4) = 4(Eξ1 + Eξ3 + Eξ4).

The individual ξj’s are bounded by the arguments in the remainder of this section. The
key term leading to the final rate is E[ξ3]:
• We show in Lemma OA3.3 that ξ1 ≲H M2

n(log n)
2∆2

n, and thus Eξ1 ≲H M2
n(log n)

2∆2
n.

• Lemma OA3.1 implies that, given the choice ρn in (OA3.5), the regularized poste-
rior means and the unregularized posterior means are equal θ̂Ĝn,η0,ρn = θ̂Ĝn,η0 , since the
truncation does not bind. Therefore, ξ2 = 0.
• We show in Appendix OA3.2 that Eξ3 ≲H (log n)3δ2n. Here, δn is the rate in (OA3.6).
• Finally, we show in Lemma OA3.4 that Eξ4 ≲H

1
n

.

Lastly, we observe that by the definition of δn in (OA3.6), the upper bound for E[ξ3] is
the dominating rate. Plugging the definition of δ2n yields that

(OA3.8) = E[MSERegretn(Ĝn, η̂)1(An)] ≲H n− 2p
2p+1 (log n)

2+α
α

+3+2β1 . □

Remark OA3.1 (Remainder of proof). The proof for Theorem A.1 hinges on the key re-
sult in Appendix OA3.2 for bounding ξ3. Effectively, the argument first relates ξ3 to the
corresponding regret for the transformed parameters τi (OA3.2):

∥τĜn,η0,ρn − τ
∗
ρn∥

2.

To prove a bound for this object, we truncate to the event where h
2
(fĜn,·, fG0,·) is small

and use the fact that—loosely speaking—the ∥τĜn,η0,ρn−τ
∗
ρn∥

2 can be bounded by h
2
(fĜn,·, fG0,·).

For this argument to work, the key is that the event where h
2
(fĜn,·, fG0,·) is small has high

probability, which is shown in Corollary OA3.1. Lastly, to prove Corollary OA3.1, we need
to first establish that Ĝn—estimated off (Ẑi, ν̂i)—does not have high likelihood suboptimal-
ity Subn(Ĝn). This is the most laborious part of the proof and shown in Corollary SM6.1.
■

Lemma OA3.3. Under the assumptions of Theorem A.1, in the proof of Theorem A.1,
ξ1 ≲H M2

n(log n)
2∆2

n.

Proof. Note that, by an application of Taylor’s theorem,∣∣∣θ̂i,Ĝn,η̂ − θ̂i,Ĝn,η0∣∣∣ = σ2
i

∣∣∣∣∣ f
′
Ĝn,ν̂i

(Ẑi)

ŝifĜn,ν̂i(Ẑi)
−

f ′
Ĝn,νi

(Zi)

s0ifĜn,νi(Zi)

∣∣∣∣∣ = σ2
i

∣∣∣∣∣
(
∂ψi
∂mi

∣∣∣∣
Ĝn,η̂

− ∂ψi
∂mi

∣∣∣∣
Ĝn,η0

)∣∣∣∣∣
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= σ2
i

∣∣∣∣∣ ∂2ψi
∂mi∂si

∣∣∣∣
Ĝn,η̃i

(ŝi − s0i) +
∂2ψi
∂m2

i

∣∣∣∣
Ĝn,η̃i

(m̂i −m0i)

∣∣∣∣∣ ,
where we use η̃i to denote some intermediate value lying on the line segment between η̂i
and η0i. By Lemma SM6.13, we can bound the two derivative terms,

1(An)
∣∣∣θ̂i,Ĝn,η̂ − θ̂i,Ĝn,η0∣∣∣ ≲H Mn(log n)∆n.

Hence, squaring both sides, we obtain ξ1 ≲H M2
n(log n)

2∆2
n. □

Lemma OA3.4. Under the assumptions of Theorem A.1, in the proof of Theorem A.1,
Eξ4 ≲H

1
n
.

Proof. Note that

E[(θ∗i,ρn − θ
∗
i )

2] =

∫ (
ν2i
f ′
G0,νi

(z)

fG0,νi(z)

)2
(
1− fG0,νi

fG0,νi ∨
ρn
νi

)2

fG0,νi(z) dz

≤ E

[(
ν2i
f ′
G0,νi

(z)

fG0,νi(z)

)4
]1/2

P [fG0,νi(Z) < ρn/νi]
1/2 (Cauchy–Schwarz)

≲H 1 · ρ1/3n Var(Z)1/6

(Tweedie’s formula, Jensen’s inequality, and Lemma SM6.11)

≲H
1

n
.

Therefore, E[ξ4] ≲H
1
n
. □

OA3.2 Controlling ξ3.

Lemma OA3.5. Under the assumptions of Theorem A.1, in the proof of Theorem A.1,
Eξ3 ≲H (log n)3δ2n.

Proof. Observe that
∣∣∣θ̂i,Ĝn,η0,ρn − θ∗i,ρn∣∣∣ = s0i

∣∣∣τ̂i,Ĝn,η0,ρn − τ ∗i,ρn∣∣∣where τ̂i,Ĝn,η0,ρn is the reg-

ularized posterior with prior Ĝn at nuisance parameter η0 and τ ∗i,ρn = τ̂i,G0,η0,ρn (where we
recall (OA3.2)).

Thus, we shall focus on controlling

1(An)∥τ̂Ĝn,η0,ρn − τ
∗
ρn∥

2.

Fix the rate function δn in (OA3.6) and the constant BH in Corollary OA3.1 (which in turn
depends on C∗

H in Corollary SM6.1). Let Bn = {h(fĜn,·, fG0,·) < BHδn} be the event of
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a small average squared Hellinger distance. Let G1, . . . , GN be a finite set of prior distri-
butions (chosen to be a net of P(R) in some distance), and let τ (j)ρn be the posterior mean
vector corresponding to prior Gj with nuisance parameter η0 and regularization ρn.

Then
1(An)

n
∥τ̂Ĝn,η0,ρn − τ

∗
ρn∥

2 ≤ 4

n

(
ζ21 + ζ22 + ζ23 + ζ24

)
where

ζ21 = ∥τ̂Ĝn,η0,ρn − τ
∗
ρn∥

2
1
(
An ∩BC

n

)
(OA3.13)

ζ22 =

(
∥τ̂Ĝn,η0,ρn − τ

∗
ρn∥ −max

j∈[N ]
∥τ (j)ρn − τ

∗
ρn∥
)2

+

1(An ∩Bn) (OA3.14)

ζ23 = max
j∈[N ]

(
∥τ (j)ρn − τ

∗
ρn∥ − E

[
∥τ (j)ρn − τ

∗
ρn∥
])2

+
(OA3.15)

ζ24 = max
j∈[N ]

(
E
[
∥τ (j)ρn − τ

∗
ρn∥
])2

(OA3.16)

The decomposition ζ1 through ζ4 is exactly analogous to Section C.3 in Soloff et al. (2021)
and to the proof of Theorem 1 in Jiang (2020). In particular, ζ1 is the gap on the “bad event”
where the average squared Hellinger distance is large, which is manageable since 1(An ∩
BC
n ) has small probability by Corollary OA3.1. ζ2 is the distance from the posterior means

at Ĝn to the closest posterior mean generated from the net G1, . . . , GN ; ζ2 is small if we
make the net very fine. ζ3 measures the distance between ∥τ (j)ρn −τ ∗ρn∥ and its expectation; ζ3
can be controlled by (i) a large-deviation inequality and (ii) controlling the metric entropy
of the net (Proposition SM6.2). Lastly, ζ4 measures the expected distance between τ (j)ρn and
τ ∗ρn; it is small since Gj are fixed priors with small average squared Hellinger distance.

However, our argument for ζ3 is slightly different and avoids an argument in Jiang
and Zhang (2009) which appears to not apply in the heteroskedastic setting. See Re-
mark OA3.2.

The subsequent subsections control ζ1 through ζ4, and find that ζ4 ≲H (log n)3δ2n is the
dominating term. □

OA3.2.1 Controlling ζ1. First, we note that(
τ̂i,Ĝn,η0,ρn − τ

∗
i,ρn

)2
1(An ∩BC

n ) ≲H log(1/ρn)1(An ∩BC
n ) = log n1(An ∩BC

n )

By Corollary OA3.1, P(An ∩BC
n ) ≤

(
log logn
log 2

+ 9
)

1
n

, and hence

1

n
Eζ21 ≲H

log n log log n

n
.
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OA3.2.2 Controlling ζ2. ChooseG1, . . . , GN to be a minimal ω-covering of
{
G : h(fG,·, fG0,·) ≤ δn

}
under the pseudometric

dMn,ρn(H1, H2) = max
i∈[n]

sup
z:|z|≤Mn

∣∣∣∣∣ ν2i f
′
H1,νi

(z)

fH1,νi(z) ∨
(
ρn
νi

) − ν2i f
′
H2,νi

(z)

fH2,νi(z) ∨
(
ρn
νi

)∣∣∣∣∣ (OA3.17)

where N ≤ N (ω/2,P(R), dMn,ρn).
47 We note that (OA3.17) and (SM6.25) are different

only by constant factors. Therefore, Proposition SM6.2 implies that

logN

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dMn,ρn

)
≲H log(1/δ)2max

(
1,

Mn√
log(1/δ)

)
(OA3.18)

for all sufficiently small δ > 0.
Then

1

n
ζ22 ≤ 1(An ∩Bn)

1

n
max
j∈[N ]
∥τ̂Ĝn,η0,ρn − τ

(j)
ρn ∥

2

(Triangle inequality : ∥a− b∥ − ∥b− c∥ ≤ ∥a− c∥)

= 1(An ∩Bn)max
j∈[N ]

1

n

n∑
i=1

1 (|Zi| ≤Mn)

 ν2i f
′
Ĝn,νi

(Zi)

fĜn,νi(Zi) ∨
(
ρn
νi

) − ν2i f
′
Gj ,νi

(Zi)

fGj ,νi(Zi) ∨
(
ρn
νi

)
2

≤ ω2

≤ δ2 log(1/δ)2

ρ2n
log(1/ρn). (Reparametrize ω = 2δ log(1/δ)ρ−1

n

√
log(1/ρn))

OA3.2.3 Controlling ζ3. We first observe that Vij ≡ |τ (j)i,ρn
−τ ∗i,ρn| ≲H

√
log n, by Lemma SM6.9.

Let Vj = (V1j, . . . , Vnj)
′, we have that

ζ3 = max
j

(∥Vj∥ − E∥Vj∥)+

Let Kn = CH log n ≥ maxij |Vij|. Since Gj, G0 are both fixed, V1j, . . . , Vnj are mutually
independent.

Observe that

P (∥Vj∥ > E[∥Vj∥] + u) = P

(∥∥∥∥ VjKn

∥∥∥∥ ≥ E
∥∥∥∥ VjKn

∥∥∥∥+ u

Kn

)
≤ exp

(
− u2

2K2
n

)
.

47Note that N is the ω covering number for
{
G : h(fG,·, fG0,·) ≤ δn

}
, which is bounded above by the

ω-packing number of
{
G : h(fG,·, fG0,·) ≤ δn

}
. The packing number is further bounded above by the

ω-packing number of P(R), since packing numbers respect subset ordering. This is in turn bounded above
by the ω/2-covering number of P(R).

55



by Lemma OA3.8. By a union bound,

P
(
ζ23 > x

)
≤ N exp

(
− x

2K2
n

)
.

Therefore,

E[ζ23 ] =
∫ ∞

0

P(ζ23 > x) dx

=

∫ ∞

0

min

(
1, N exp

(
− x

2K2
n

))
dx

= 2K2
n logN +

∫ ∞

2K2
n logN

N exp

(
− x

2K2
n

)
dx

≲H log n logN.

Now, if we take δ = ρn/n, then

1

n
E[ζ22 + ζ23 ] ≲H

(log n)2.5Mn

n
.

Remark OA3.2. For the analogous term in the homoskedastic setting, Jiang and Zhang
(2009) observe that ∥τ (j)ρn − τ ∗ρn∥ is a Lipschitz function of the noise component Zi − τi.
As a result, a Gaussian isoperimetric inequality (Theorem 5.6 in Boucheron et al. (2013))
establishes that

P
(
∥τ (j)ρn − τ

∗
ρn∥ ≥ E

[
∥τ (j)ρn − τ

∗
ρn∥ | τ1, . . . , τn

]
+ x
)

is small, independently of n—a fact used in Proposition 4 of Jiang and Zhang (2009). Note
that the concentration of ∥τ (j)ρn − τ ∗ρn∥ is towards its conditional mean

E
[
∥τ (j)ρn − τ

∗
ρn∥ | τ1, . . . , τn

]
.

In the homoskedastic setting where νi = ν,

E
[
∥τ (j)ρn − τ

∗
ρn∥ | τ1, . . . , τn

]
= EG0,n

[
∥τ (j)ρn − τ

∗
ρn∥
]

(OA3.19)

where G0,n = 1
n

∑
i δτi is the empirical distribution of the τ ’s. However, (OA3.19) no

longer holds in the heteroskedastic setting, and to adapt this argument, we need to addi-
tionally control the difference between E

[
∥τ (j)ρn − τ ∗ρn∥ | τ1, . . . , τn

]
and E

[
∥τ (j)ρn − τ ∗ρn∥

]
.

The argument in Jiang (2020) (p.2289) appears to use the Gaussian concentration of Lips-
chitz functions argument without the additional step.

Instead, we establish control of ζ3 by observing that entries of τ (j)ρn −τ ∗ρn are bounded and
applying the convex Lipschitz concentration inequality. Since, like Soloff et al. (2021), we
seek regret control in terms of mean-squared error, this argument applies to their setting as
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well. Jiang (2020), on the other hand, seeks regret control in terms of root-mean-squared
error, and it is unclear if similar fixes apply. ■

OA3.2.4 Controlling ζ4. Consider a change of variables where we let wi = z/νi and
λi = τ/νi. Let G(i) be the distribution of λi under G, where G(i)(dλ) = G(dτ). Then

fG,νi(z) =

∫
1

νi
φ (wi − λi)G(dτ) =

1

νi

∫
φ (wi − λi)G(i)(dλi) =

1

νi
fG(i),1(wi)

and f ′
G,νi

(z) = 1
ν2i
f ′
G(i),1

(wi).

Hence,

E(τ (j)ρn − τ
∗
ρn)

2 = ν2i E

(
f ′
Gji,1

(wi)

fGji,1(wi) ∨ ρn
−

f ′
G0i,1

(wi)

fG0i,1(wi) ∨ ρn

)2

≲H max
(
(log 1/ρn)

3, | log h(fGji,1, fG0i,1)|
)
h2(fGji,1, fG0i,1)

(Lemmas OA3.1 and OA3.9)

= max
(
(log 1/ρn)

3, | log h(fGj ,νi , fG0,νi)|
)
h2(fGj ,νi , fG0,νi)

(Hellinger distance is invariant to change-of-variables)

Let hi = h(fGj ,νi , fG0,νi). Hence,

1

n
E[ζ24 ] ≲H

(log n)3

n

∑
i:| log hi|<(log 1/ρn)3

h2i +
1

n

∑
i:| log hi|>(log 1/ρn)3

| log hi|h2i

≤ (log n)3h
2
(fGj ,·, fG0,·) +

1

n

∑
i:| log hi|>(log 1/ρn)3

1

e
hi (x| log x| ≤ e−1)

Note that

| log hi| > (log 1/ρn)
3 =⇒ hi < exp

(
− log(1/ρn)

3
)
< ρ(log 1/ρn)

2

n ≲H ρ3n ≲H n−1.

(Assumption SM6.1)
Therefore the first term dominates, and thus 1

n
E[ζ24 ] ≲H (log n)3δ2n.

OA3.3 Auxiliary lemmas.

Lemma OA3.6. Let θ̂i,Ĝ,η̂ be the posterior mean at prior Ĝ and nuisance parameter esti-
mate at η̂. Let θ∗i = θ̂i,G0,η0 be the true posterior mean. Assume that Ĝ is supported within
[−Mn,Mn] whereMn = maxi |Ẑi(η̂)∨1|. Let ∥η̂−η∥∞ = max(∥m̂−m0∥∞, ∥ŝ−s0∥∞).

Then, suppose

(1) ∥η̂ − η∥∞ ≲H 1.
(2) Assumptions 2 and 3 holds.
(3) ŝ ≳H sℓn for some fixed sequence sℓn > 0.
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Then ∣∣∣θ̂i,Ĝ,η̂ − θ∗i ∣∣∣ ≲H s−2
ℓn Zn.

Moreover, the assumptions are satisfied by Assumptions 1 to 4 with sℓn = s0ℓ ≍ 1.

Proof. Observe that∣∣∣θ̂i,Ĝn,η̂ − θ̂i,G0,η0

∣∣∣ = ∣∣∣∣∣ 1ŝi ν̂
2
i f

′
Ĝn,ν̂i

(Ẑi)

fĜn,ν̂i(Ẑi)
− 1

s0i

v2i f
′
G0νi

(Zi)

fG0,νi(Zi)

∣∣∣∣∣
≲H s−1

ℓnMn + Zn.

by the boundedness of Ĝn and Lemma SM6.17. Note that |Ẑi(η̂)| =
∣∣∣ s0iŝi Zi + m0i−m̂i

ŝi

∣∣∣ ≲H

s−1
ℓn |Zi|. Therefore, ∣∣∣θ̂i,Ĝn,η̂ − θ̂i,G0,η0

∣∣∣ ≲H s−2
ℓn Zn. □

Lemma OA3.7. Let Zn = maxi |Zi| ∨ 1. Under Assumption 2, for t > 1

P(Zn > t) ≤ n exp (−CA0,α,νut
α) and E[Zp

n] ≲p,H (log n)p/α.

Moreover, if Mn = (CH + 1)(C−1
2,H log n)1/α as in (OA3.4), then for all sufficiently large

choices of CH, P(Zn > Mn) ≤ n−2.

Proof. The first claim is immediate under Lemma SM6.15 and a union bound. The second
claim follows from the observation that

E[max
i

(|Zi| ∨ 1)p] ≤

(∑
i

E[(|Zi| ∨ 1)pc]

)1/c

≤ n1/cCp
H(pc)

p/α.

where the last inequality follows from simultaneous moment control. Choose c = log n

with n1/ logn = e to finish the proof. For the “moreover” part, we have that

P(Zn > Mn) ≤ exp
(
log n− CA0,α,νu(CH + 1)αC−1

2,H log n
)

and it suffices to choose CH such that (CH + 1)α >
3C2,H

CA0,α,νu
so that P(Zn > Mn) ≤

e−2 logn = n−2. □

Lemma OA3.8. Let W = (W1, . . . ,Wn) be a vector containing independent entries,
where Wi ∈ [0, 1]. Let ∥·∥ be the Euclidean norm. Then, for all t > 0

P [∥W∥ > E∥W∥+ t] ≤ e−t
2/2.

Proof. We wish to use Theorem 6.10 of Boucheron et al. (2013), which is a dimension-free
concentration inequality for convex Lipschitz functions of bounded random variables. To
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do so, we observe that w 7→ ∥w∥ is Lipschitz with respect to ∥·∥, since

∥w+a∥ ≤ ∥w∥+∥a∥ ∥w∥ = ∥w+a−a∥ ≤ ∥w+a∥+∥a∥ =⇒ |∥w+a∥−∥w∥| ≤ ∥a∥.

Moreover, trivially ∥λw + (1 − λ)v∥ ≤ λ∥w∥ + (1 − λ)∥v∥ for λ ∈ [0, 1], and hence
w 7→ ∥w∥ is convex. Convexity implies the convexity required in Theorem 6.10 of
Boucheron et al. (2013). This checks all conditions and the claim follows by applying
Theorem 6.10 of Boucheron et al. (2013). □

Lemma OA3.9. Let fH = fH,1. Then, for 0 < ρn ≤ 1√
2πe2

,∫ [
f ′
H1
(x)

fH1(x) ∨ ρn
−

f ′
H0
(x)

fH0(x) ∨ ρn

]2
fH0(x) dx ≲

(
(log 1/ρn)

3 ∨ | log h (fH1 , fH0) |
)
h2 (fH1 , fH0)

where we define the right-hand side to be zero if H1 = H0.

Proof. This claim is an intermediate step of Theorem 3 of Jiang and Zhang (2009). In (3.10)
in Jiang and Zhang (2009), the left-hand side of this claim is defined as r2(fH1 , ρn). Their
subsequent calculation, which involves Lemma 1 of Jiang and Zhang (2009), proceeds to
bound

r2(fH1 , ρn) ≤ 2
√
2eh(fH1 , fH0)max

(
φ3
+(ρn),

√
2a
)
+ 2φ+(ρn)

√
2h(fH1 , fH0),

for a2 = max
(
φ2
+(ρn) + 1, | log h2 (fH1 , fH0) |

)
. Collecting the powers on h, log h, squar-

ing, and using φ+(ρn) ≲
√

log(1/ρn) proves the claim. □
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Part 2 Additional discussions and empirical results

Appendix OA4. Additional discussions

OA4.1 Alternatives to CLOSE.

OA4.1.1 Alternative methods. Let us turn to a few specific alternative methods that consider
failure of prior independence. We argue that they do not provide a free-lunch improvement
over our assumptions. At a glance, these alternative methods have properties summarized
in Table OA4.1.

TABLE OA4.1. Properties of alternative methods

t-ratios Var. stab.
transforms

Random σ̂i SURE

Restrict to a class of procedures ✗ ✗
Change the loss function ✗ ✗
Require access to micro-data ✗
Assume θi is independent from some other

known nuisance parameter, e.g. ni
✗ ✗

Parametric restrictions on the micro-data ✗ ✗

Alternative 1 (Working with t-ratios). We may consider normalizing σi away by working
with t-ratios Ti ≡ Yi

σi
| (σi, θi) ∼ N (θi/σi, 1) . The resulting problem is homoskedastic

by construction. It is natural to consider performing empirical Bayes shrinkage assuming
that θi

σi

i.i.d.∼ H0, and use, say, σiEĤn

[
θi
σi
| Ti
]

as an estimator for the posterior mean of θi
(Jiang and Zhang, 2010). However, such an approach approximates the optimal decision
rule within a restricted class on a different objective.

Let us restrict decision rules to those of the form δi,t-stat(Yi, σi) = σih(Yi/σi). The oracle
Bayes choice of h is h⋆(Ti) = E[σiθi|Ti]

E[σ2
i |Ti]

. However, h⋆ is not the posterior mean of θi/σi
given the t-ratio Ti, unless σ2

i y θi/σi. On the other hand, the loss function that does ratio-
nalize the posterior mean h(Ti) = E[θi/σi | Ti] is the precision-weighted compound loss
L(δ, θ1:n) = 1

n

∑n
i=1 σ

−2
i (δi − θi)

2. Thus, rescaling posterior means on t-ratios achieves
optimality for a weighted objective among a restricted class of decision rules δi,t-stat. ■

Alternative 2 (Variance-stabilizing transforms). Second, we may consider a variance-
stabilizing transform when the underlying micro-data are Bernoulli and θi is a Bernoulli
mean (Efron and Morris, 1975; Brown, 2008). Specifically, we rely on the asymptotic
approximation

√
ni(Yi − θi)

d−→
ni→∞

N (0, θi(1− θi)).
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A variance-stabilizing transform can disentangle the dependence: Let Wi = 2arcsin(
√
Yi)

and ωi = 2arcsin(
√
θi), and, by the delta method,

√
ni (Wi − ωi)

d−→
ni→∞

N (0, 1). Thus, approximately, Wi | ωi, ni ∼ N
(
ωi,

1

ni

)
.

One might consider an empirical Bayes approach on the resulting Wi. Note that Wi may
still violate prior independence, since ωi may not be independent of ni. Moreover, squared
error loss on estimating ωi = 2arcsin(

√
θi) is different from squared error loss on esti-

mating θi. We do not know of any guarantees for the loss function on θi, 1
n

∑n
i=1(δi −

sin2(ωi/2))
2, when we perform empirical Bayes analysis on ωi. ■

Alternative 3 (Treating the standard error as estimated). Lastly, if the researcher has ac-
cess to micro-data, Gu and Koenker (2017) and Fu et al. (2020) propose empirical Bayes
strategies that treat σi as noisy as well, in which we know the likelihood of (Yi, σi). This
approach allows for dependence between θi and σi but assumes independence between
(θi, σi) and some other known nuisance parameter. To describe their model, we introduce
more notation. Let Yij, j = 1, . . . , ni, denote the micro-data for population i, where, for
each i, we are interested in the mean of Yij . Let Yi denote their sample mean and S2

i denote
their sample variance, where σ2

i = S2
i /ni. Let σ2

i0 denote the true variance of observations
from population i.

Both papers work under Gaussian assumptions on the micro-data. This parametric as-
sumption48 on the micro-data—which is stronger than we require—implies that Yi y S2

i |
(σi0, θi, ni) with marginal distributions:

Yi | σi0, θi, ni ∼ N
(
θi,

σ2
i0

ni

)
S2
i | σi0, θi, ni ∼ Gamma

(
ni − 1

2
,

1

2σ2
i0

)
.

They then propose empirical Bayes methods treating Yi ≡ (Yi, S
2
i ) as noisy estimates for

parameters θi ≡ (θi, σ
2
i0). This formulation allows θi to have a flexible distribution, and

thus allows for dependence between θi and σ2
i0. However, since the known sample size ni

enters the likelihood of Yi, this approach still assumes that ni y θi. ■

This discussion is not to say that CLOSE is necessarily preferable to these alternatives.
It highlights that the possible dependence between θi and σi cannot be easily resolved. As
summarized in Table OA4.1, existing alternatives compromise on optimality, use a differ-
ent loss function, or implicitly assume θi is independent from components of σ2

i (e.g., ni).
Of course, depending on the empirical context, these may well be reasonable features.
48The parametric restriction on the micro-data Yij can be relaxed by appealing to the asymptotic distribution
of (Yi, S2

i )—resulting in the Gaussian likelihood (Yi, S
2
i ) | θi,Σi ∼ N (θi,Σi). In general, however, Σi

also depends on ni and higher moments of Yij , which again may not be independent of θi.
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In contrast, our approach models θi | σi directly via the location-scale assumption (2.4).
A natural question is whether other types of modeling may be superior—which we turn to
next. We argue that the location-scale model uniquely capitalizes on the appealing proper-
ties of the NPMLE-based empirical Bayes approaches.

OA4.1.2 Alternative models for θi | σi. One alternative is simply treating the joint dis-
tribution of (θi, σi) fully nonparametrically. For instance, an f -modeling approach with
Tweedie’s formula49 implies that an estimate of the conditional distribution Yi | σi is all
one needs for computing the posterior means (Brown and Greenshtein, 2009; Liu et al.,
2020; Luo et al., 2023). However, conditional density estimation is a challenging problem,
and most available methods do not exploit the restriction that Yi | σi is a Gaussian convolu-
tion. Similarly, one could consider flexible parametric g-modeling of θi | σi in the vein of
the log-spline sieve of Efron (2016).50 This has the advantage of estimating a smooth prior
at the cost of having tuning parameters. We are not aware of regret results for this approach.

If we commit to making some substantive restriction on the joint distribution of (θi, σi),
it is fair to ask why the conditional location-scale restriction (2.4) is necessarily prefer-
able. However, if we wish to capitalize on the theoretical and computational advantages
of NPMLE, it is natural to consider a class of procedures that transform the data in some
way and use the NPMLE on the resulting transformed data to estimate the prior distribution
(Appendix OA4.2 gives a heuristic justification for this strategy). If we wish to preserve
the Gaussian location model structure on the transformed data, then effectively we can only
consider affine transformations (i.e., Z = a(σ)+ b(σ)Y ). If we further wish that Z obeys a

49That is, the posterior mean can be written as a functional of the density of Y :

E[θi | Yi, σi] = Yi + σ2
i

d

dy
log f(y | σi)

∣∣∣∣
y=Yi

,

where f(y | σ) is the conditional density of Y | σ. Empirical Bayes approaches exploiting this formula
is known as f -modeling (Efron, 2014), since f usually denotes the marginal distribution of Y . This is in
contrast to g-modeling, which seeks to estimate the prior distribution of θi.
Brown and Greenshtein (2009) develop an f -modeling approach with a kernel smoothing density estimator
in the homoskedastic setting. Liu et al. (2020) extend this approach to a homoskedastic, balanced dynamic
panel setting, where the initial outcome for each unit acts as a known nuisance parameter, much like σi in our
case. Brown and Greenshtein (2009) and Liu et al. (2020) show that the squared error Bayes regret converges
to zero faster than the oracle Bayes risk. These guarantees do not imply regret rate characterizations similar
to those that we obtain. See Jiang and Zhang (2009) for additional discussion about the strengths of the
theoretical results in Brown and Greenshtein (2009) compared to NPMLE-based g-modeling approaches.
50Generalizing Efron (2016), we may model g(θ | σ) ∝ exp(

∑J
j=1 aj(σ;αj)pj(θ)) where p1, . . . , pJ

are flexible sieve expansions (e.g. spline basis functions) and aj(σ;αj) are flexible functions indexed by
finite-dimensional parameters αj . The parameters α1, . . . , αJ can be estimated by maximizing the penalized
likelihood of Y1:n.
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Gaussian location model in which prior independence holds (i.e., τ ≡ a(σ)+b(σ)θ is inde-
pendent from ν ≡ b(σ)σ)—so that we can apply NPMLE-based approaches assuming prior
independence—then we have no other choice but to assume (2.4). Thus, the conditional
location-scale assumption is uniquely well-suited to capitalize on the favorable properties
of NPMLE already established in the literature, which we extend via Theorem 1.

OA4.2 Model-free interpretation of CLOSE-NPMLE. When the location-scale model fails
to hold, it remains sensible to consider estimating the NPMLE on an affine transformation
of the data, as in CLOSE-NPMLE.

Let us first consider a given affine transformation of the data—not necessarily τ =
Z−m0(σ)
s0(σ)

—into (Zi, τi, νi) for which τi | νi ∼ H(i), and ask why NPMLE is reasonable.
In population, NPMLE seeks to minimize the average Kullback–Leibler (KL) divergence
between the distribution of the estimates Zi and the distribution implied by the convolution
H ⋆N (0, ν2i ):

max
H

1

n

n∑
i=1

EZi∼fH(i),νi
[log fH,νi(Zi)] , equivalent to min

H

1

n

n∑
i=1

KL
(
fH(i),νi ∥ fH,νi

)
,

where fH,ν is the density of the convolution H ⋆N (0, ν2). As shown by Jiang and Zhang
(2009) and Jiang (2020), the regret in mean-squared error under a misspecified prior τi ∼ H

is upper bounded by the average squared Hellinger distance between the distribution of the
data and the distribution implied by H . The average Hellinger distance is further upper
bounded by the average KL divergence:

1

n

n∑
i=1

h2
(
fH(i),νi , fH,νi

)
≤ 1

n

n∑
i=1

KL
(
fH(i),νi ∥ fH,νi

)
.

In this sense, even under misspecification (H(i) ̸= H(j)), NPMLE chooses a common distri-
bution H that minimizes an upper bound of regret.

Now that we have a justification for the NPMLE, let us consider the transformation we
would like to choose. It is reasonable, then, to choose the affine transform (a(σ), b(σ))

so that the resulting conditional distributions H(i) of the transformed parameter τi | σi are
similar—under some distance measure. Doing so does not recover prior independence on
the transformed data but limits the extent of non-independence. Choosing a(σ), b(σ) to
ensure that τi | σi has the same first two moments is intuitively reasonable, and actually has
a formal interpretation in terms of information-theoretic divergences and optimal transport
metrics, at least in a large-σ regime (Chen and Niles-Weed, 2022).
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Appendix OA5. Additional empirical exercises

OA5.1 Positivity of s0(·) in the Opportunity Atlas data. In the Opportunity Atlas data,
we often observe that the estimated conditional variance is negative: ŝ20 < 0. To test if
this is due to sampling variation or underdispersion of the Opportunity Atlas estimates
relative to the estimated standard error, we consider the following upward-biased esti-
mator of s20(σi). Without loss, let us sort the Yi, σi by σi, where σ1 ≤ · · · ≤ σn. Let
Si =

1
2

[
(Yi+1 − Yi)2 − (σ2

i + σ2
i+1)
]
. Note that

E[Si | σ1:n] =
1

2
E[(θi+1 − θi)2 | σ1:n]

=
s20(σi+1) + s20(σi)

2
+

1

2
(m0(σi+1)−m0(σi))

2 ≥ s20(σi+1) + s20(σi)

2
.

Hence Si is an overestimate of the successive averages of s0(σ). Figure OA5.1 plot the esti-
mated conditional expectation of Si given σi, using a sample of (S1, S3, S5, . . .) so that the
Si’s used are mutually independent. We see that for many measures of economic mobility,
we can reject E[Si | σi] ≥ 0, indicating some overdispersion in the data.

OA5.2 Simulation exercise setup. This section describes the details of the simulation ex-
ercise in Section 4. We restrict to the 10,109 tracts within the twenty largest Commuting
Zones. Tracts with missing information are dropped for each measure of mobility. Specif-
ically, the simulated data-generating process is as follows:

(Sim-1) Residualize Ỹi against some covariates Xi to obtain β and residuals Yi. Esti-
mate the conditional moments m0, s0 on (Yi, σi) via local linear regression, described in
Appendix SM8.

(Sim-2) Partition σ into vingtiles. Within each vingtile j, estimate an NPMLE Gj over
the data (

Yi −m0(σi)

s0(σi)
,

σi
s0(σi)

)
and normalize Gj to have zero mean and unit variance. Sample τ ∗i | σi ∼ Gj if observation
i falls within vingtile j.

(Sim-3) Let ϑ∗
i = s0(σi)τ

∗
i +m0(σi) + β′Xi and let Ỹ ∗

i | θ∗i , σi ∼ N (θ∗i , σ
2
i ).

The estimated β,m0, s0 will serve as the basis for the true data-generating process in the
simulation, and as a result we do not denote it with hats. Figure OA5.2 shows an overlay of
real and simulated data for one of the variables we consider. Visually, at least, the simulated
data resemble the real estimates.
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FIGURE OA5.1. Estimated conditional variance s20(σ), binned into deciles,
with 95% uniform confidence intervals shown.

The covariates used are poverty rate in 2010, share of Black individuals in 2010, mean
household income in 2000, log wage growth for high school graduates, mean family in-
come rank of parents, mean family income rank of Black parents, the fraction with college
or post-graduate degrees in 2010, and the number of children—and the number of Black
children—under 18 living in the given tract with parents whose household income was be-
low the national median. These covariates are included in Chetty et al. (2020)’s publicly
available data, and these descriptions are from their codebook. This set of covariates is not
precisely the same as what is used in Bergman et al. (2024). Bergman et al. (2024) addi-
tionally use economic mobility estimates for a later birth cohort, which are not included in
the publicly released version of the Opportunity Atlas. The “number of children” variables
are used by (Chetty et al., 2020) as a population weighting variable; they contain some
information on the implicit micro-data sample sizes ni.
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FIGURE OA5.2. A draw of real vs. simulated data for estimates of TOP-20
PROBABILITY for Black individuals

OA5.3 Robustness checks for the calibration exercise in Section 4. In Figure OA5.3, we
evaluate two variants of CLOSE-NPMLE. The first variant (column 4) uses an estimator for
s0(·) that smoothes the difference (Y −m̂(σ))2−σ2, rather than smoothing (Y −m̂(σ))2 and
then subtracting σ2. Since local linear regression suffers from bias coming from the con-
vexity of the underlying unknown function, smoothing the difference can perform better,
as the convexity bias differences out. The second variant (column 6) projects the estimated
NPMLE Ĝn to the space of mean zero and variance one distributions, by normalizing by its
estimated first and second moments. Neither variant performs appreciably differently from
the main version of CLOSE-NPMLE (column 5) that we demonstrate in the main text.

OA5.4 Different simulation setup. We have also conducted a Monte Carlo exercise where
we replace (Sim-2) with the following step:

• For each σi, let

αi =
1

2
+

1

2

m0(σi)−minim0(σi)

maxim0(σi)−mini(σi)
∈ [1/2, 1]

We sample τ ∗i | σi as a scaled and shifted Weibull distribution with shape αi. The scaling
and translation ensures that τi | σi has mean zero and variance one. Because we choose
the Weibull distribution, the shape parameter αi corresponds exactly to α in Assumption 2.
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85.0 88.4 91.4 91.7 91.8 91.7

87.0 90.3 94.2 95.0 95.1 94.9

81.9 88.5 93.2 93.4 93.5 92.9

89.4 92.3 93.5 94.9 94.9 94.7

82.9 85.9 92.6 93.6 93.7 93.6

57.7 80.8 91.4 92.8 92.9 92.9

74.6 80.3 93.8 94.9 94.9 94.8

46.0 53.0 95.4 97.8 97.5 97.2

69.6 75.7 90.2 93.5 93.6 93.4

36.8 44.8 94.4 97.5 97.0 96.6

50.6 58.9 88.2 91.2 91.0 90.7

73.9 80.7 91.2 96.3 96.8 95.1

47.8 52.4 96.4 97.9 97.4 97.2

59.6 64.0 93.2 97.4 97.6 96.8

41.7 49.3 96.0 96.6 96.3 96.2

69.6 80.3 93.2 94.9 94.9 94.8

What % of Naive-to-Oracle MSE gain do we capture?

FIGURE OA5.3. Additional CLOSE-NPMLE variants for the calibrated
simulation in Section 4. Here the results average over 100 replications.

Our choices of αi implies that τi | σi has thicker tails than exponential and does not have a
moment-generating function.

The Weibull distribution has thicker tails and is skewed, and as a result, NPMLE-based
methods tend to greatly outperform methods based on assuming Gaussian priors. Fig-
ure OA5.4 shows the analogue of Figure 3 for this data-generating process. Indeed, we
see that INDEPENDENT-NPMLE improves over INDEPENDENT-GAUSS considerably, and
similarly for CLOSE-NPMLE and ORACLE-GAUSS.

OA5.5 MSE in validation exercise with coupled bootstrap. We compare empirical Bayes
procedures for the squared error estimation problem (Decision Problem 1), in the setting
of the validation exercise in Section 4. Since this is an empirical application on real, rather
than synthetic, data, we no longer have access to oracle estimators. As a result, for the rel-
ative MSE performance, we normalize by a different benchmark. We can think of the per-
formance gain of INDEPENDENT-GAUSS over NAIVE as the value of doing basic, standard
empirical Bayes shrinkage. We normalize each method’s estimated MSE improvement
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23 48 71 73 70 80 90 94 96
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44 61 94 97 61 71 95 97 99

25 43 88 90 41 51 94 97 96
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What % of Naive-to-Oracle MSE gain do we capture?

FIGURE OA5.4. Analogue of Figure 3 for the data-generating process in
Appendix OA5.4. Here the results average over 100 replications.

against NAIVE as a multiple of this “value of basic empirical Bayes.” Figure OA5.5(a)
shows the resulting relative performance. Since our notion of relative performance has
changed, we use a different color scheme. A value of 1 means that a method does exactly
as well as INDEPENDENT-GAUSS, and a value of 2 means that, relative to NAIVE, a method
doubles the gain of basic empirical Bayes. Performance on a non-relative scale is shown in
Figure OA5.5(b).

We find that our empirical patterns from the calibrated simulation Figure 3 mostly per-
sists on real data. In particular, INDEPENDENT-NPMLE offers small improvements over
INDEPENDENT-GAUSS. Nevertheless, CLOSE-NPMLE continues to dominate other meth-
ods. Across the definitions of ϑi, CLOSE-NPMLE generates a median of 180% the value
of basic empirical Bayes. That is, on mean-squared error, moving from INDEPENDENT-
GAUSS to CLOSE-NPMLE is about half as valuable as moving from NAIVE to INDEPENDENT-
GAUSS. For our running example (TOP-20 PROBABILITY for Black individuals), moving
from INDEPENDENT-GAUSS to CLOSE-NPMLE is more valuable than moving from NAIVE

to INDEPENDENT-GAUSS. If practitioners find using the standard empirical Bayes method
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to be a worthwhile investment over using the raw estimates directly, then they may find
using CLOSE-NPMLE over INDEPENDENT-GAUSS to be a similarly worthwhile investment.

OA5.6 Empirical Bayes pooling over all Commuting Zones in validation exercise.
Here, we repeat the exercise in Figure 4, but we now estimate empirical Bayes methods
pooling over all Commuting Zones. We still pick the top third of every Commuting Zone.
Our first exercise repeats Figure 4 in this setting, shown in Figure OA5.6. The results are
extremely similar.

Separately, we consider the version of this exercise without covariates in Figure OA5.10.
We see that covariates are extremely important for the performance of INDEPENDENT-
GAUSS, as it frequently underperforms NAIVE without covariates.51 By comparison, they
are less important for the performance of CLOSE-NPMLE, as σi contains a lot of the signal
in the tract-level covariates.

OA5.7 The tradeoff between accurate targeting and estimation precision. In this sec-
tion, we investigate the tradeoff between accurate targeting and estimation precision. That
is, suppose θi, Yi, σi and ϑi,Υi, ςi are two sets variables corresponding to two measures of
economic mobility. For instance, perhaps θi is MEAN RANK for Black individuals and ϑi
is MEAN RANK pooling over all individuals. Suppose the decision maker would like to
select populations with high θi, but the estimates Yi are noisier than the estimates Υi. It is
plausible that screening on posterior means for ϑi might outperform screening on posterior
means for θi.

We investigate this question via coupled bootstrap in the Bergman et al. (2024) exer-
cise. In particular, we let the subscript b (resp. w) denote quantities for Black (resp.
white) individuals. We assume that Yib y Yiw | θib, θiw. For each tract, we construct
πi = nib/ni, where ni (resp. ni) is the number of (resp. Black) children under 18 living in
the given tract with parents whose household income was below the national median.52 Let
θi = πiθib + (1− πi)θiw be a pooled measure, where

Yi = πiYib + (1− πi)Yiw | θi ∼ N (0, π2
i σ

2
ib + (1− πi)2σ2

iw).

51This is in part since our implementation of INDEPENDENT-GAUSS uses weighted means for estimating the
prior parameters, worsening the misspecification. See Footnote 37.
52This is the demographic weighting variable used in Chetty et al. (2020). We use this weighting to construct
a pooled variable, rather than use the pooled variable in the Opportunity Atlas directly for the following
reasons. The pooled estimates of Chetty et al. (2020) unfortunately frequently lies outside the convex hull of
the white and Black estimates, making it difficult to infer the relative weights for Black individuals in a tract.
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Each coupled bootstrap draw adds and subtracts noise Zib, Ziw to Yib and Yiw, where
Zib y Ziw. Bootstrap draws for Yi are constructed by taking the πi-combination of boot-
strap draws for Yib, Yiw.

Here, we investigate whether screening tracts based on posterior mean estimates for θiw
or θi generates better decisions in terms of θib, owing to the precision in Yiw and Yi. Fig-
ure OA5.11 shows estimated performances of different empirical Bayes methods by dif-
ferent proxy variables that the screening targets. For each measure of economic mobility
for Black individuals, dots on the thick black dashed line correspond to screening on the
corresponding θib. Dots on the red (resp. blue) dashed line correspond to screening on θiw
(resp. θi). We see that for all three measures of economic mobility, using CLOSE-NPMLE

to screen on the original parameter θib performs best. In other words, the benefits of higher
precision are insufficient to offset inaccurate targeting.
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On MSE, how much do we gain over Naive as a multiple of Indep-Gauss's gain over Naive?

(b) Performance difference against NAIVE
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Indep-Gauss
Indep-NPMLE
CLOSE-NPMLE

Notes. In panel (a), each column is an empirical Bayes strategy that we consider, and
each row is a different definition of θi. The table shows relative performance, defined as
the squared error improvement over NAIVE, normalized as a multiple of the improvement
of INDEPENDENT-GAUSS over NAIVE. By definition, such a measure is zero for NAIVE
and one for INDEPENDENT-GAUSS. The last row shows the column median. The
mean-squared error estimates average over 100 coupled bootstrap draws. For the variable
INCARCERATION for white individuals, the strategy INDEPENDENT-GAUSS underperform
NAIVE, and the resulting ratio is thus undefined.
Panel (b) shows the difference in MSE against NAIVE. □

FIGURE OA5.5. Estimated MSE Bayes risk for various empirical Bayes
strategies in the validation exercise.
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(a) Estimated performance of CLOSE-NPMLE, INDEPENDENT-GAUSS, and NAIVE

0 10 20 30 40 50 60
Performance (average i among selected, percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]
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Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

CLOSE-NPMLE
Independent Gaussian
Naive
E[ ] ±  SD( )

(b) Estimated performance difference relative to NAIVE
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Performance difference relative to screening on raw estimates (percentile rank or percentage point)
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Incarceration [Black male]
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49.449.4
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9.36.1

4.44.0

3.42.4
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CLOSE-NPMLE
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(c) Estimated performance difference relative to picking uniformly at random
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Performance difference relative to picking uniformly at random (percentile rank or percentage point)
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Naive
[0,  SD( )]

Notes. These figures show the estimated performance of various decision rules over 100
coupled bootstrap draws. Performance is measured as the mean ϑi among selected Census
tracts. All decision rules select the top third of Census tracts within each Commuting Zone.
Figure (a) plots the estimated performance, averaged over 100 coupled bootstrap draws,
with the estimated unconditional mean and standard deviation shown as the grey interval.
Figure (b) plots the estimated performance gap relative to NAIVE, where we annotate with
the estimated performance for CLOSE-NPMLE and INDEPENDENT-GAUSS. Figure (c) plots
the estimated performance gap relative to picking uniformly at random; we continue to
annotate with the estimated performance. The shaded regions in Figure (c) have lengths
equal to the unconditional standard deviation of the underlying parameter ϑ. □

FIGURE OA5.6. Performance of decision rules in top-m selection exercise
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(a) Not residualized by covariates
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Notes. This figure shows the estimated E[θ | σ] for mean income rank, pooling over all
demographic groups. This is the measure of economic mobility used by Bergman et al.
(2024). The estimation and the confidence band procedures are the same as those in
Figure 1. In panel (a), θi, Yi are defined as unresidualized measures of mean income rank.
In panel (b), we treat θi, Yi as residualized against a vector of tract-level covariates as
specified in Appendix OA5.2. □

FIGURE OA5.7. Estimated E[θ | σ] for mean income rank among those
with parents at the 25th percentile
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FIGURE OA5.8. The analogue of Figure 1 where Yi, θi are treated as
residualized against a vector of covariates as specified in Appendix OA5.2.
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FIGURE OA5.9. Absolute mean-squared error risk of key methods for the
calibrated simulation in Figure 3.
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(a) Estimated performance of CLOSE-NPMLE, INDEPENDENT-GAUSS, and NAIVE
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Performance (average i among selected, percentile rank or percentage point)

Mean income rank
Mean income rank [white]
Mean income rank [Black]

Mean income rank [white male]
Mean income rank [Black male]

P(Income ranks in top 20)
P(Income ranks in top 20 | white)
P(Income ranks in top 20 | Black)

P(Income ranks in top 20 | white male)
P(Income ranks in top 20 | Black male)

Incarceration
Incarceration [white]
Incarceration [Black]

Incarceration [white male]
Incarceration [Black male]

CLOSE-NPMLE
Independent Gaussian
Naive
E[ ] ±  SD( )

(b) Estimated performance difference relative to NAIVE
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(c) Estimated performance difference relative to picking uniformly at random
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Notes. These figures show the estimated performance of various decision rules over 100
coupled bootstrap draws. There are no covariates to residualize against. Performance
is measured as the mean ϑi among selected Census tracts. All decision rules select the
top third of Census tracts within each Commuting Zone. Figure (a) plots the estimated
performance, averaged over 100 coupled bootstrap draws, with the estimated unconditional
mean and standard deviation shown as the grey interval. Figure (b) plots the estimated
performance gap relative to NAIVE, where we annotate with the estimated performance
for CLOSE-NPMLE and INDEPENDENT-GAUSS. Figure (c) plots the estimated performance
gap relative to picking uniformly at random; we continue to annotate with the estimated
performance. The shaded regions in Figure (c) have lengths equal to the unconditional
standard deviation of the underlying parameter ϑ. □

FIGURE OA5.10. Performance of decision rules in top-m selection
exercise (No covariates)
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Notes. Estimated performance for different empirical Bayes methods by different proxy
parameters. The performance of screening based on the raw Yib is normalized to zero. All
results are over 100 coupled bootstrap draws. □

FIGURE OA5.11. Performances of strategies that screen on posterior
means for more precisely estimated parameters
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Part 3 Important preliminary results for Theorem 1

Appendix SM6. An oracle inequality for the likelihood

Recall that for some fixed ∆n,Mn, we define An =
{
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn

}
in (A.1). In this

section, we bound
P
[
An, Subn(Ĝn) ≳H ϵn

]
,

where we recall Subn from (A.2), for some rate function ϵn. It is convenient to state a set of high-level
assumptions on the rates ∆n,Mn. These are satisfied for the choice (OA3.4) for our main results (Theo-
rem A.1).

Assumption SM6.1. Assume that

(1) 1√
n
≲H ∆n ≲H

1
M3
n
≲H 1

(2)
√
log n ≲H Mn

Our main result in this section is the following oracle inequality.

Theorem SM6.1. Let ∥η̂ − η∥∞ = max(∥m̂−m0∥∞, ∥ŝ− s0∥∞) and Zn = maxi∈[n] |Zi| ∨ 1. Suppose
Ĝn satisfies Assumption 1. Under Assumptions 2 to 4 and SM6.1, there exists constants C1,H, C2,H > 0

such that the following tail bound holds: Let

ϵn =Mn

√
log n∆n

1

n

n∑
i=1

h
(
fĜn,νi , fG0,νi

)
+∆nMn

√
log ne−C2,HM

α
n +∆2

nM
2
n log n+M2

n

∆
1− 1

2p
n√
n

.

(SM6.1)

Then,

P
[
Zn ≤Mn, ∥η̂ − η∥∞ ≤ ∆n,Subn(Ĝn) > C1,Hϵn

]
≤ 9

n
.

The following corollary plugs in concrete rates for ∆n,Mn (OA3.4) and verifies that they satisfy As-
sumption SM6.1.

Corollary SM6.1. For β ≥ 0, suppose ∆n,Mn are of the form (OA3.4). Then there exists a C∗
H such that

the following tail bound holds. Recall the average Hellinger distance h from (A.4). Suppose Ĝn satisfies
Assumption 1. Under Assumptions 2 to 4, define εn as:

εn = n
− p

2p+1 (log n)
2+α
2α

+βh
(
fĜn,·, fG0,·

)
+ n

− 2p
2p+1 (log n)

2+α
α

+2β, (SM6.2)

we have that, P
[
An, Subn(Ĝn) > C∗

Hεn

]
≤ 9

n . The constant CH in ∆n,Mn affects the conclusion of the
statement only through affecting the constant C∗

H.

Proof. We first show that the specification of ∆n andMn means that the requirements of Assumption SM6.1
are satisfied. Among the requirements of Assumption SM6.1:

(1) is satisfied since the polynomial part of ∆n converges to zero slower than n−1/2, but converges to
zero faster than any logarithmic rate. Mn is a logarithmic rate.

(2) is satisfied since α ≤ 2.
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We also observe that by Jensen’s inequality,

1

n

∑
i

h(fĜn,νi , fG0,νi) ≤ h(fĜn,·, fG0,·),

where we recall h from (A.4), and so we can replace the corresponding factor in ϵn by h. Now, we plug the
rates ∆n,Mn into ϵn. We find that the term

∆nM
2
ne

−C2,HM
α
n = ∆nM

2
ne

−(CH+1)α(logn) ≤ ∆nM
2
nn

−1 ≲H ∆2
nM

2
n log n

since log n > 1 as n >
√
2πe by Assumption 1. Plugging in the rates for the other terms, we find that

ϵn ≲H εn. Therefore, Corollary SM6.1 follows from Theorem SM6.1. □

SM6.1 Proof of Theorem SM6.1.

SM6.1.1 Decomposition of Subn(Ĝn). Observe that, by (3.2) in Assumption 1,

1

n

n∑
i=1

ψi(Zi, η̂, Ĝn)−
1

n

n∑
i=1

ψi(Zi, η̂, G0) ≥ κn

For random variables an, bn such that almost surely∣∣∣∣ 1n
n∑
i=1

ψi(Zi, η̂, Ĝn)− ψi(Zi, η0, Ĝn)
∣∣∣∣ ≤ an∣∣∣∣ 1n

n∑
i=1

ψi(Zi, η̂, G0)− ψi(Zi, η0, G0)

∣∣∣∣ ≤ bn
we have

1

n

n∑
i=1

ψi(Zi, η0, Ĝn)−
1

n

n∑
i=1

ψi(Zi, η0, G0) ≥ −an − bn − κn

and therefore
Subn(Ĝn) ≤ an + bn + κn.

Therefore, it suffices to show large deviation results for an and bn, where an is chosen to be (SM6.7) and bn
is chosen to be (SM6.10).

SM6.1.2 Taylor expansion of ψi(Zi, η̂, Ĝn)−ψi(Zi, η0, Ĝn). Define ∆mi = m̂i−m0i, ∆si = ŝi− s0i, and
∆i = [∆mi,∆si]

′. Recall ∥η̂ − η∥∞ = max(∥s − s0∥∞, ∥m −m0∥∞) as in (A.1). Since ψi(Zi, η,G) is
smooth in (mi, si) ∈ R× R>0, we can take a second-order Taylor expansion:

ψi

(
Zi, η̂, Ĝn

)
− ψi

(
Zi, η0, Ĝn

)
=
∂ψi
∂mi

∣∣∣∣
η0,Ĝn

∆mi +
∂ψi
∂si

∣∣∣∣
η0,Ĝn

∆si +
1

2
∆′
iHi(η̃i, Ĝn)∆i︸ ︷︷ ︸

R1i

(SM6.3)

where Hi(η̃i, Ĝn) is the Hessian matrix ∂2ψi
∂ηi∂η′i

evaluated at some intermediate value η̃i lying on the line
segment between η̂i and η0i.

We further decompose the first-order terms into an empirical process term and a mean-component term.
By Lemma OA3.1, (SM6.34), and (SM6.36), for ρn in (OA3.5) we have that the denominators to the first
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derivatives can be truncated at ρn, as fi,Ĝn ≥ ρn/νi so that the truncation does not bind:

∂ψi
∂mi

∣∣∣∣
η0,Ĝn

= − 1

si

f ′
i,Ĝn

fi,Ĝn ∨
ρn
νi

≡ Dm,i(Zi, Ĝn, η0, ρn) (SM6.4)

∂ψi
∂si

∣∣∣∣
η0,Ĝn

=
si
σ2i

Qi(Zi, η0, Ĝn)

fi,Ĝn ∨
ρn
νi

≡ Ds,i(Zi, Ĝn, η0, ρn). (SM6.5)

where we recall Qi from (SM6.40).
Let

Dk,i(Ĝn, η0, ρn) =

∫
Dk,i(z, Ĝn, η0, ρn) fG0,νi(z)dz for k ∈ {m, s} (SM6.6)

be the population mean of Dk,i. Then, for k ∈ {m, s}, we can decompose

∂ψi
∂ki

∣∣∣∣
η0,Ĝn

∆ki =
[
Dk,i(Zi, Ĝn, η0, ρn)−Dk,i(Ĝn, η0, ρn)

]
∆ki +Dk,i(Ĝn, η0, ρn)∆ki

Hence, we can decompose the first-order terms in (SM6.3):

1

n

n∑
i=1

∂ψi
∂ki

∣∣∣∣
η0,Ĝn

∆ki =
1

n

n∑
i=1

Dk,i(Ĝn, η0, ρn)∆ki

+
1

n

n∑
i=1

[
Dk,i(Zi, Ĝn, η0, ρn)−Dk,i(Ĝn, η0, ρn)

]
∆ki

≡ U1k + U2k

Let the second order term in (SM6.3) be R1 =
1
n

∑
iR1i. We let

an = |R1|+
∑

k∈{m,s}

|U1k|+ |U2k| (SM6.7)

SM6.1.3 Taylor expansion of ψi(Zi, η̂, G0)− ψi(Zi, η0, G0). Like (SM6.3), we similarly decompose

ψi(Zi, η̂, G0)− ψi(Zi, η0, G0) =
∂ψi
∂mi

∣∣∣∣
η0,G0

∆mi +
∂ψi
∂si

∣∣∣∣
η0,G0

∆si +
1

2
∆′
iHi(η̃i, G0)∆i︸ ︷︷ ︸

R2i

(SM6.8)

=
∑

k∈{m,s}

Dk,i(Zi, G0, η0, 0)∆ki +R2i

≡ U3mi + U3si +R2i. (SM6.9)

Let U3k =
1
n

∑
i U3ki for k ∈ {m, s} and let R2 =

1
n

∑
iR2i. We let

bn = |R2|+
∑

k∈{m,s}

|U3k|+ |U3k| (SM6.10)

SM6.1.4 Bounding each term individually. By our decomposition, we can write

an + bn + κn ≤ κn + |R1|+ |R2|+
∑

k∈{m,s}

|U1k|+ |U2k|+ |U3k|
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To summarize, we have that, for k = m, s,

U1k =
1

n

n∑
i=1

Dk,i(Ĝn, η0, ρn)∆ki (SM6.11)

U2k =
1

n

n∑
i=1

[
Dk,i(Zi, Ĝn, η0, ρn)−Dk,i(Ĝn, η0, ρn)

]
∆ki (SM6.12)

U3k =
1

n

n∑
i=1

Dk,i(Zi, G0, η0, 0)∆ki (SM6.13)

R1 =
1

2n

n∑
i=1

∆′
iHi(η̃i, Ĝn)∆i (SM6.14)

R2 =
1

2n

n∑
i=1

∆′
iHi(η̃i, Ĝ0)∆i (SM6.15)

The ensuing subsections bound each term individually. Here we give an overview of the main ideas:

(1) We bound 1(An)|U1m| in Lemma SM6.1 by observing that |Dmi| is small when Ĝn is close to G0,
since Dmi(G0, η0, 0) = 0. To do so, we need to control the differences

Dmi(Ĝn, η0, ρn)−Dmi(G0, η0, ρn)

and
Dmi(G0, η0, ρn)−Dmi(G0, η0, 0)︸ ︷︷ ︸

=0

= Dmi(G0, η0, ρn).

Controlling the first difference features the Hellinger distance, while controlling the second relies on the fact
that PX∼f(X)(f(X) ≤ ρ) cannot be too large, by a Chebyshev’s inequality argument in Lemma SM6.11.
Similarly, we bound 1(An)|U1s| in Lemma SM6.2.

(2) The empirical process terms U2m, U2s are bounded probabilistically in Lemmas SM6.3 and SM6.4
with statements of the form

P(An, |U2k| > c1) ≤ c2.

To do so, we upper bound 1(An)U2k ≤ U2k. The upper bound is obtained by projecting Ĝn onto a ω-net of
P(R) in terms of some pseudo-metric dk,∞,Mn induced by Dk,i. The upper bound U2k then takes the form,
for η ∈ S over a Hölder space,

ω∆n + max
j∈[N ]

sup
η∈S

∣∣∣∣ 1n∑
i

(Dki −Dki)(ηi − η0i)
∣∣∣∣ N ≤ N(ω,P(R), dk,∞,Mn).

Large deviation of U2k is further controlled by applying Dudley’s chaining argument (Vershynin, 2018),
since the entropy integral over Hölder spaces is well-behaved. The covering number N is controlled via
Proposition SM6.1 and Proposition SM6.2, which are minor extensions to Lemma 4 and Theorem 7 in Jiang
(2020). The covering number is of a manageable size since the induced distributions fG,νi are very smooth.

(3) Since Dk,i(G0, η0, 0) = 0. U3m, U3s are effectively also empirical process terms, without the ad-
ditional randomness in Ĝn. Thus the projection-to-ω-net argument above is unnecessary for U3m, U3s,
whereas the bounding follows from the same Dudley’s chaining argument. Lemma SM6.5 bounds U3k.
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(4) For the second derivative terms R1, R2, we observe that the second derivatives take the form of func-
tions of posterior moments. The posterior moments under prior Ĝn is bounded within constant factors of
M q
n since the support ofGn is restricted. The posterior moments under priorG0 is bounded by |Zi|q ≲H M q

n

as we show in Lemma SM6.17, thanks to the simultaneous moment control for G0. Hence 1(An)R1 can be
bounded in almost sure terms. We bound 1(An)R2 probabilistically. These second derivatives are bounded
in Lemmas SM6.6 and SM6.7.

(1) and (4) above bounds U1k, R1, R2 almost surely under An. (2) and (3) bounds U2k, U3k probabilisti-
cally. By a union bound in Lemma SM6.16, we can simply add the rates.

Doing so, we find that the first term in ϵn (SM6.1) comes from U1s, which dominates U1m. The second
term comes from U2s, which dominates U2m. The third term comes from R1, which dominates R2. The
fourth term comes from U3s. The leading terms in ϵn dominate κn, recalling (3.3). This completes the proof.

SM6.2 Bounding U1m.

Lemma SM6.1. Under Assumptions 1 to 4, assume additionally that ∥η̂− η∥∞ ≤ ∆n, Zn ≤Mn. Assume
that the rates satisfy Assumption SM6.1. Then

|U1m| ≡

∣∣∣∣∣ 1n
n∑
i=1

Dmi(Ĝn, η0, ρn)∆mi

∣∣∣∣∣ ≲H ∆n

[
log n

n

n∑
i=1

h(fG0,νi , fĜn,νI ) +
M

1/3
n

n

]
. (SM6.16)

Proof. Note that

|Dm,i(Ĝn, η0, ρn)| = |(SM6.4)| ≲s0ℓ

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fG0,νi(z)dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

[fG0,νi(z)− fĜn,νi(z) + fĜn,νi(z)]dz

∣∣∣∣∣
≤

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

[fG0,νi(z)− fĜn,νi(z)] dz

∣∣∣∣∣ (SM6.17)

+

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

fĜn,νi(z)dz

∣∣∣∣∣ (SM6.18)

By the bounds for (SM6.17) and (SM6.18) below, we have that

|U1m| ≲H ∆n

{√
log n

n

n∑
i=1

h(fG0,νi , fĜn,ν̂i) +
M

1/3
n

n

}
by Assumption SM6.1. □

SM6.2.1 Bounding (SM6.17). Consider the first term (SM6.17):

[(SM6.17)]2 =

[∫ f ′
Ĝn,νi

(z)

fĜn,νi(z) ∨
ρn
νi

(√
fG0,νi(z)−

√
fĜn,νi(z)

)(√
fG0,νi(z) +

√
fĜn,νi(z)

)
dz

]2

≤
∫ (√

fG0,νi(z)−
√
fĜn,νi(z)

)2

dz︸ ︷︷ ︸
2h2
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·
∫ ( f ′

Ĝn,νi
(z)

fĜn,νi(z) ∨
ρn
νi

)2(√
fG0,νi(z) +

√
fĜn,νi(z)

)2

dz (Cauchy–Schwarz)

≲ h2(fG0,νi , fĜn,νi)

∫ ( f ′
Ĝn,νi

(z)

fĜn,νi(z) ∨
ρn
νi

)2

(fG0,νi(z) + fĜn,νi(z)) dz (SM6.19)

By Lemmas OA3.1 and SM6.9,(
f ′
Ĝn,νi

(z)

fĜn,νi(z) ∨
ρn
νi

)2

≲
1

νi
log(1/ρn) ≲H log n.

Hence,
(SM6.17) ≲H h(fG0,νi , fĜn,νi)

√
log n.

SM6.2.2 Bounding (SM6.18). The second term (SM6.18) is

(SM6.18) =

∣∣∣∣∣
∫ f ′

Ĝn,νi
(z)

fĜn,νi(z)

(
fĜn,νi(z)

fĜn,νi(z) ∨
ρn
νi

− 1

)
fĜn,νi(z) dz

∣∣∣∣∣
≤
∫ ∣∣∣∣∣f

′
Ĝn,νi

(z)

fĜn,νi(z)

∣∣∣∣∣1(fĜn,νi(z) ≤ ρn/νi) fĜn,νi(z) dz
≤

(
EZ∼fĜn,νi

[(
EĜn,νi

[
(τ − Z)
ν2i

| Z
])2

])1/2

︸ ︷︷ ︸
≤Eτ∼Ĝn,Z∼N (τ,νi)

[(τ−Z)2/ν4i ]1/2=ν
−1
i

·
√

PfĜn,νi
[fĜn,νi(Z) ≤ ρn/νi].

(Cauchy–Schwarz and (SM6.41))

By Jensen’s inequality and law of iterated expectations, the first term is bounded by 1
νi

. By Lemma SM6.11,

the second term is bounded by ρ1/3n VarZ∼fĜn,νi
(Z)1/6. Now,

VarZ∼fĜn,νi
(Z) ≤ ν2i + µ22(Ĝn) ≲H M2

n.

Hence, by Lemma OA3.1,
(SM6.18) ≲H M1/3

n ρ1/3n ≲H M1/3
n n−1.

SM6.3 Bounding U1s.

Lemma SM6.2. Under Assumptions 1 to 4 and SM6.1, if ∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, then

|U1s| ≲H ∆n

[
Mn
√
log n

n

n∑
i=1

h(fĜn,νi , fG0,νi) +
M4/3

n

]
. (SM6.20)

Proof. Similar to our computation with Dm,i, we decompose

|Ds,i(Ĝn, η0, ρn)| ≲σℓ,σu,s0ℓ,s0u

∣∣∣∣∫ Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)
(fG0,νi(z)− fĜn,νi(z)) dz

∣∣∣∣ (SM6.21)

+

∣∣∣∣∫ Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)
fĜn,νi(z) dz

∣∣∣∣. (SM6.22)

We conclude the proof by plugging in our subsequent calculations. □
84



SM6.3.1 Bounding (SM6.21). The first term (SM6.21) is bounded by

[(SM6.21)]2 ≲ h2(fG0,νi , fĜn,νi)

∫ (
Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)

)2 [
fG0,νi(z) + fĜn,νi(z)

]
dz,

(recall Qi from (SM6.40)) similar to the computation in (SM6.19).
By Lemmas OA3.1 and SM6.12,(

Qi(z, η0, Ĝn)

fĜn,νi(z) ∨ (ρn/νi)

)2

≲σℓ,σu,s0ℓ,s0u (
√
log nMn + log n)2 ≲H M2

n log n

Hence ∫ (
Q(z, νi)

fĜn,ν̂i(z) ∨ (ρn/νi)

)2 [
fG0,νi(z) + fĜn,νi(z)

]
dz ≲H M2

n log n.

Hence
(SM6.21) ≲σℓ,σu,s0ℓ,s0u Mn(

√
log n)h(fG0,νi , fĜn,νi). (SM6.23)

SM6.3.2 Bounding (SM6.22). Observe that

(SM6.22) =

∣∣∣∣∣
∫
Qi(z, η0, Ĝn)

fĜn,νi(z)

(
fĜn,νi(z)

fĜn,νi(z) ∨ (ρn/νi)
− 1

)
fĜn,νi(z) dz

∣∣∣∣∣
Similar to our argument for (SM6.18), by Cauchy–Schwarz,

(SM6.22) ≤
(
EfĜn,νi (z)

[
(EĜn,νi [(Z − τ)τ | Z])

2
])1/2√

PfĜn,νi (z)
(fĜn,νi(z) ≤ ρn/νi)

≲H Mn · ρ1/3n M1/3
n ≲H

M
4/3
n

n
.

SM6.4 Bounding U2m.

Lemma SM6.3. Under Assumptions 1 to 4 and SM6.1,

P

[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U2m| ≳H

√
log n∆n

{
e−CHM

α
n +

log n√
n

+
1

(n∆
1/p
n )1/2

}]
≤ 2

n

Proof. We prove this claim by first showing that if ∥η̂ − η∥∞ ≤ ∆n and Zn ≤ Mn, we can upper bound
|U2m| by some stochastic quantity U2m. Now, observe that

P
[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U2m| > t

]
≤ P

[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, U2m > t

]
≤ P[U2m > t].

Hence, a large-deviation upper bound on U2m would verify the claim.
We now construct U2m assuming ∥η̂ − η∥∞ ≤ ∆n and Zn ≤Mn. Let

Dm,i,Mn(Zi, Ĝn, η̂, ρn) = Dm,i(Zi, Ĝn, η̂, ρn)1(|Zi| ≤Mn)

and let
Dm,i,Mn(Ĝn, η̂, ρn) =

∫
Dm,i(z, Ĝn, η̂, ρn)1(|z| ≤Mn)fG0,νi(z) dz.
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Dm,i,Mn , Dm,i,Mn are the analogues ofDm,i andDm,i that truncates to {|z| ≤Mn}. Note that, on the event
Zn ≤Mn, Dm,i,Mn = Dm,i.

We decompose that

|U2m| =
∣∣∣∣ 1n

n∑
i=1

(Dm,i −Dm,i)∆mi

∣∣∣∣
≤
∣∣∣∣ 1n

n∑
i=1

(Dm,i,Mn −Dm,i,Mn)∆mi

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

(Dm,i −Dm,i,Mn)∆mi

∣∣∣∣.
Note that the second term can be controlled since |Zi| ≥Mn is unlikely:

|Dm,i −Dm,i,Mn | ≲σℓ,σu,s0ℓ,s0u

∣∣∣∣∫
|z|>Mn

f ′
Ĝn,νi

(z)

fĜn,νi(z) ∨ (ρn/νi)︸ ︷︷ ︸
≲H

√
logn, Lemmas OA3.1 and SM6.9

fG0,νi(z) dz

∣∣∣∣
≲H

√
log nPG0,νi(|Zi| > Mn)

By Lemma SM6.15, PG0,νi(|Zi| > Mn) ≤ exp (−Cα,A0,νuM
α
n ) . Hence, the second term∣∣∣∣∣ 1n

n∑
i=1

(Dm,i −Dm,i,Mn)∆mi

∣∣∣∣∣ ≲H e−CHM
α
n
√

log n∆n.

Note that under our assumptions, maxi |Ẑi| ∨ 1 ≤ CHMn. Let L = [−CHMn, CHMn] ≡ [−M,M ].

Define

S =
{
(m, s) : ∥m−m0∥ ≤ ∆n, ∥s− s0∥ ≤ ∆n, (m, s) ∈ CpA1

([σℓ, σu])
}
. (SM6.24)

For two distributions G1, G2, define the following pseudo-metric

dm,∞,Mn(G1, G2) = max
i∈[n]

sup
|z|≤Mn

|Dm,i(z,G1, η0, ρn)−Dm,i(z,G2, η0, ρn)| (SM6.25)

Let G1, . . . , GN be an ω-net of P(L) in terms of dm,∞,Mn(G1, G2), where N is taken to be the covering
number N = N (ω,P(L), dm,∞,Mn(·, ·)) . Let Gj∗ be the projection of Ĝn to the net. Namely, Gj∗ is a
member of the net where dm,∞,Mn(Ĝn, Gj∗) ≤ ω.

By construction, |Dm,i,Mn(Ĝn, η̂, ρn)−Dm,i,Mn(Gj∗ , η̂, ρn)| ≤ ω as well, since the integrand inDm,i,Mn

is bounded uniformly. Hence, by projecting Ĝn to Gj∗ , we obtain∣∣∣∣ 1n
n∑
i=1

(Dm,i,Mn(Zi, Ĝn, η0, ρn)−Dm,i,Mn(Ĝn, η0, ρn))(m̂(σi)−m0(σi))

∣∣∣∣
≤ 2ω∆n + max

j∈[N ]

∣∣∣∣ 1n
n∑
i=1

(Dm,i,Mn(Zi, Gj , η0, ρn)−Dm,i,Mn(Gj , η0, ρn))(m̂(σi)−m0(σi))

∣∣∣∣ (SM6.26)

Next, consider the process Vn,j(η) defined by

η 7→ 1

n

n∑
i=1

(Dm,i,Mn(Zi, Gj , η0, ρn)−Dm,i,Mn(Gj , η0, ρn))(m(σi)−m0(σi))
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≡ 1

n

n∑
i=1

vi,j(η) ≡ Vn,j(η)

so that, when ∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn,

(SM6.26) ≲ ω∆n + max
j∈[N ]

sup
η∈S
|Vn,j(η)|.

Thus, we can take

U2m = CH

{
e−CHM

α
n
√
log n∆n + ω∆n + max

j∈[N ]
sup
η∈S
|Vn,j(η)|

}
where we shall prove a stochastic upper bound and optimize ω shortly.

By the results in Appendix SM6.4.1 via Dudley’s chaining argument, with probability at least 1− 2/n,

max
j∈[N ]

sup
η∈S
|Vn,j(η)| ≲H

∆n
√
log n√
n

[
∆−1/(2p)
n +

√
logN +

√
log n

]
By Appendix SM6.4.2, we can pick ω such that

ω∆n + max
j∈[N ]

sup
η∈S

Vnj(η) ≲H ∆n

√
log n

 log n√
n

+
1√
n∆

1/p
n

 (SM6.27)

with probability at least 1− 2/n. Putting these observations together, we have that

P

[
U2m ≳H

√
log n∆n

{
e−CHM

α
n +

log n√
n

+
1

(n∆
1/p
n )1/2

}]
≤ 2

n
.

This concludes the proof. □

SM6.4.1 Bounding maxj∈[N ] supη∈S |Vn,j(η)|. Note that Evij(η) = 0. Moreover, by Lemmas OA3.1
and SM6.9,

max
(
Dm,i,Mn(Zi, Gj , η0, ρn), Dm,i,Mn(Gj , η0, ρn)

)
≲H

√
log(1/ρn) ≲H

√
log n

Recall that ∥η1 − η2∥∞ = max (∥m1 −m2∥∞, ∥s1 − s2∥∞) . Then,

|vij(η1)− vij(η2)| ≲H
√

log n∥η1 − η2∥∞

As a result,53

∥Vn,j(η1)− Vn,j(η2)∥ψ2 ≲H

√
log n√
n
∥η1 − η2∥∞.

Hence Vn,j(η) is a mean-zero process with subgaussian increments54 with respect to ∥η1 − η2∥∞. Note
that the diameter of S under ∥η1 − η2∥∞ is at most 2∆n. Hence, by an application of Dudley’s tail bound
(Theorem 8.1.6 in Vershynin (2018)), for all u > 0,

P

[
sup
η∈S
|Vn,j(η)| ≳H

√
log n√
n

{∫ 2∆n

0

√
logN(ϵ, S, ∥·∥∞) dϵ+ u∆n

}]
≤ 2e−u

2
.

53See Definition 2.5.6 in Vershynin (2018) for a definition of the ψ2-norm (subgaussian norm).
54See Definition 8.1.1 in Vershynin (2018).
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Note that√
logN(ϵ, S, ∥·∥∞) ≤

√
2 logN(ϵ, CpA1

([−σℓ, σu]), ∥·∥∞) ≤
√
2 logN(ϵ/A1, C

p
1 ([−σℓ, σu]), ∥·∥∞)

By Theorem 2.7.1 in van der Vaart and Wellner (1996),

logN(ϵ/A1, C
p
1 ([−σℓ, σu]), ∥·∥∞) ≲p,σℓ,σu

(
A1

ϵ

)1/p

≲H

(
1

ϵ

)1/p

.

Hence, plugging in these calculations, we obtain

P

[
sup
η∈S
|Vn,j(η)| ≳H

√
log n√
n

{
∆

1− 1
2p

n + u∆n

}]
≤ 2e−u

2
.

This implies that

sup
η∈S
|Vn,j(η)| ≲H

√
log n√
n

∆
1− 1

2p
n + Ṽn,j ,

for some random variable Ṽn,j ≥ 0 and ∥Ṽn,j∥ψ2 ≲H
∆n√
n

√
log n.55 Thus,

(SM6.26) ≲H ∆n

ω +

√
log n√
n∆

1/p
n

+ max
j∈[N ]

Ṽn,j .

Finally, note that by Lemma SM6.14 with the choice t =
√
log n,

P

[
max
j∈[N ]

Ṽn,j ≳H
∆n√
n

√
log n

[√
logN +

√
log n

]]
≤ 2

n
.

SM6.4.2 Selecting ω. The rate function that involves ω and logN is of the form

ω +

√
logN

n

√
log n

Reparametrizing ω = δ log(1/δ)

√
log(1/ρn)

ρn
, by Proposition SM6.2, shows that

logN ≤ logN

(
δ log(1/δ)

√
log(1/ρn)

ρn
,P(R), dm,∞,M

)
≲H log(1/δ)2max

(
1,

Mn√
log(1/δ)

)
Consider picking δ = ρn

1√
n
≤ 1/e so that log(1/δ) = log(1/ρn) +

1
2 log n ≲H log n. Since log(1/ρn) ≳

M2
n, we conclude that max

(
1, Mn√

log(1/δ)

)
≲H 1. Hence,

logN ≲H log2 n.

Note too that ω ≲H
(logn)3/2√

n
. Thus, under Assumption SM6.1,

ω +
√
logN

1√
n

√
log n ≲H

(log n)3/2√
n

.

55We can take

Ṽn,j =

{
sup
η∈S
|Vn,j(η)| − CH

Mn√
n
∆

1− 1
2p

n

}
+

.

The tail bound P(Ṽn,j ≳H u∆n√
n
Mn) ≤ 2e−u2

implies the ψ2-norm bound by expression (2.14) in Vershynin (2018).
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SM6.5 Bounding U2s.

Lemma SM6.4. Under Assumptions 1 to 4 and SM6.1,

P

∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U2s| ≳H ∆nMn

√
log n

e−CHM
α
n +

log n√
n

+
1√
n∆

1/p
n


 ≤ 2

n

Proof. This proof operates much like the proof of Lemma SM6.3. We observe that we can come up with an
upper bound U2s of U2s under the event ∥η̂ − η∥∞ ≤ ∆n and Zn ≤Mn. A stochastic upper bound on U2s

then implies the lemma.
Let us first assume ∥η̂−η∥∞ ≤ ∆n and Zn ≤Mn . DefineDs,i,Mn andDs,i,Mn analogously toDm,i,Mn

and Dm,i,Mn . A similar decomposition shows

|U2s| ≤
∣∣∣∣ 1n

n∑
i=1

(Ds,i,Mn −Ds,i,Mn)∆si

∣∣∣∣+ ∣∣∣∣ 1n
n∑
i=1

(Ds,i −Ds,i,Mn)∆si

∣∣∣∣
Lemma SM6.12 is a uniform bound on the integrand in the second term. Hence, the second term is

bounded by∣∣∣∣ 1n
n∑
i=1

(Ds,i −Ds,i,Mn)∆si

∣∣∣∣
≲H ∆n

√
log(1/ρn)

1

n

n∑
i=1

(∫
|Zi|>Mn

|z|fG0,νi(z) dz +
√

log(1/ρn)

∫
|Zi|>Mn

fG0,νi(z) dz

)

≲H ∆n

√
log n

{
e−

CH
2
Mα
n max
i∈[n]

µ2(fG0,νi) +
√
log ne−CHM

α
n

}
(Cauchy–Schwarz for the first term and apply Lemmas OA3.1 and SM6.15)

≲H ∆n(log n)e
−CHM

α
n .

Note that under our assumptions, maxi |Ẑi| ∨ 1 ≤ CHMn. Let L = [−CHMn, CHMn] ≡ [−M,M ].

Define S =
{
(m, s) : ∥m−m0∥ ≤ ∆n, ∥s− s0∥ ≤ ∆n, (m, s) ∈ CpA1

([σℓ, σu])
}

. For two distributions
G1, G2, define the following pseudo-metric

ds,∞,Mn(G1, G2) = max
i∈[n]

sup
|z|≤Mn

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)| (SM6.28)

Let G1, . . . , GN be an ω-net of P(L) in terms of ds,∞,Mn(G1, G2), where

N = N (ω,P(L), ds,∞,Mn(·, ·)) .

LetGj∗ be aGj where ds,∞,Mn(Ĝn, Gj∗) ≤ ω.By construction, |Ds,i,Mn(Ĝn, η0, ρn)−Ds,i,Mn(Gj∗ , η0, ρn)| ≤
ω as well, since the integrand is bounded uniformly.

Hence∣∣∣∣ 1n
n∑
i=1

(Ds,i,Mn(Zi, Ĝn, η0, ρn)−Ds,i,Mn(Ĝn, η0, ρn))(ŝ(σi)− s0(σi))
∣∣∣∣

≤ 2ω∆n + max
j∈[N ]

∣∣∣∣ 1n
n∑
i=1

(Ds,i,Mn(Zi, Gj , η0, ρn)−Ds,i,Mn(Gj , η0, ρn))(ŝ(σi)− s0(σi))
∣∣∣∣ (SM6.29)
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Next, consider the process

η 7→ 1

n

n∑
i=1

(Ds,i,Mn(Zi, Gj , η0, 0)−Ds,i,Mn(Gj , η0, 0))(s(σi)− s0(σi)) ≡
1

n

n∑
i=1

vi,j(η) ≡ Vn,j(η)

so that (SM6.29) ≲ ω∆n + maxj∈[N ] supη∈S |Vn,j(η)|. This again upper bounds |Uis| with some U is that
does not depend on the event ∥η̂−η∥∞ ≤ ∆n, Zn ≤Mn, on the event ∥η̂−η∥∞ ≤ ∆n, Zn ≤Mn. Hence,
we can choose

U2s = CH

{
ω∆n + max

j∈[N ]
sup
η∈S
|Vn,j(η)|+∆n(log n)e

−CHM
α
n

}
.

It remains to show a tail bound for Vn,j , as well as an appropriate choice of ω, for U2s.
By Lemma SM6.12, the process Vn,j has the subgaussian increment property

|Vn,j(η1)− Vn,j(η2)| ≲H
Mn
√
log n√
n

∥η1 − η2∥∞

as in Appendix SM6.4.1, with a different constant for the subgaussianity. Hence, by the same argument as
in Appendix SM6.4.1, with probability at least 1− 2/n,

max
j∈[N ]

sup
η∈S
|Vn,j(η)| ≲H

∆nMn
√
log n√

n

[
∆−1/(2p)
n +

√
logN +

√
log n

]
We turn to selecting ω. The relevant term for selecting ω is ω + Mn

√
logn√
n

√
logN . Reparametrize

ω =Mn

√
log(1/ρn)δ log(1/δ)/ρn. Pick δ = ρn/

√
n < 1/e. The same argument as in Appendix SM6.4.2

with Proposition SM6.2 shows that

ω +
Mn
√
log n√
n

√
logN ≲H

Mn(log n)
3/2

√
n

.

Therefore, plugging in these choices, we can compute that with probability at least 1 − 2/n, under As-
sumption SM6.1,

U2s ≲H ∆nMn

√
log n

e−CHM
α
n +

log n√
n

+
1√
n∆

1/p
n

 .

This concludes the proof. □

SM6.6 Bounding U3m, U3s.

Lemma SM6.5. Under Assumptions 2 to 4 and SM6.1,

P

[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U3m| ≳H ∆n

{
e−CHM

α
n +

Mn√
n

(
∆−1/(2p)
n + log n

)}]
≤ 2

n

P

[
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |U3s| ≳H ∆n

{
e−CHM

α
n +

M2
n√
n

(
∆−1/(2p)
n + log n

)}]
≤ 2

n
.

Proof. The proof structure follows that of Lemmas SM6.3 and SM6.4.
Recall that

U3m =
1

n

n∑
i=1

Dm,i(Zi, G0, η0, 0)(m̂i −m0).
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=
1

n

n∑
i=1

(Dm,i,Mn −Dm,i,Mn)(m̂i −m0) +Dm,i,Mn(m̂i −m0)

Note that

|Dm,i,Mn | =
∣∣∣∣∫

|z|≤Mn

f ′G0,νi
(z)

fG0,νi(z)
fG0,νi(z) dz

∣∣∣∣
=

∣∣∣∣∫ 1 (|z| > Mn) ·
f ′G0,νi

(z)

fG0,νi(z)
fG0,νi(z) dz

∣∣∣∣
≲σℓ,σu,s0ℓ,s0u P(|z| > Mn)

1/2

(Cauchy–Schwarz, Jensen, and law of iterated expectations via (SM6.41))

≲H e−CHM
α
n . (SM6.30)

Recall S in (SM6.24). Define the process Vn(η) = 1
n

∑
i vn,i(η) ≡

1
n

∑n
i=1(Dm,i,Mn −Dm,i,Mn)(m̂i −

m0). Therefore, if ∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn,

|U3m| ≲H ∆ne
−CHM

α
n + sup

η∈S
|Vn(η)| ≡ U3m.

Therefore, to bound U3m it suffices to show a tail bound for supη∈S |Vn(η)|. Observe that

Vn(η1)− Vn(η2) =
1

n

∑
i

(Dm,i,Mn −Dm,i,Mn)(η1i − η2i)

Now, by Lemma 2.6.8 in Vershynin (2018), since |Dm,i,Mn | ≲H Mn by Lemma SM6.17,

∥vni(η1)− vni(η2)∥ψ2 ≲ ∥Dm,i,Mn(η1i − η2i)∥ψ2 ≲H Mn∥η1 − η2∥∞.

Since vni(η1)− vni(η2) is mean zero, we have that

∥Vn(η1)− Vn(η2)∥ψ2 ≲H
Mn√
n
∥η1 − η2∥∞ (SM6.31)

Hence, by the same Dudley’s chaining calculation in Appendix SM6.4.1, with probability at least 1− 2/n,

U3m ≲H ∆n

{
e−CHM

α
n +

Mn√
n

(
∆−1/(2p)
n + log n

)}
.

This concludes the proof for U3m.
The proof for U3s is similar. We need to establish the analogue of (SM6.30) and (SM6.31). For the tail

bound (analogue of (SM6.30)), we have the same bound

|Ds,i,Mn | ≲ P (|z| > Mn)
1/2
(
EfG0,νi

(z)

[
(EG0,νi [(Z − τ)τ | Z])2

])1/2
≲H e−CHM

α
n .

For the analogue of (SM6.31), since Lemma SM6.17 implies that |Ds,i,Mn | ≲H Z2
i 1(Zi ≤Mn) ≤M2

n,

∥Vn(η1)− Vn(η2)∥ψ2 ≲H
M2
n√
n
∥η1 − η2∥∞.

Hence, with probability at least 1− 2/n

U3s ≲H ∆n

{
e−CHM

α
n +

M2
n√
n
(∆−1/(2p)

n + log n)

}
. □
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SM6.7 Bounding R1, R2.

Lemma SM6.6. Recall R1i from (SM6.3). Then, under Assumptions 1 to 4 and SM6.1, if ∥η̂−η∥∞ ≤ ∆n

and Zn ≤Mn, then R1i ≲H ∆2
nM

2
n log n.

Proof. Observe that R1i ≲σℓ,σu,s0ℓ,s0u max
(
∆2
mi,∆

2
si

)
· ∥Hi(η̃i, Ĝn)∥∞, where ∥·∥∞ takes the largest el-

ement from a matrix by magnitude. By assumption, the first term is bounded by ∆2
n. By Lemma SM6.13,

the second derivatives are bounded by M2
n log n. Hence ∥Hi(η̃i, Ĝn)∥∞ ≲H M2

n log n. This concludes the
proof. □

Lemma SM6.7. Under Assumptions 2 to 4 and SM6.1, then

P
(
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |R2| ≳H ∆2

n

)
≤ 1

n
.

Proof. Recall that 1(An) = 1(∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn). Note that

1(An)|R2| ≲H ∆2
n

1

n

n∑
i=1

1(An)∥Hi∥∞.

by (1,∞)-Hölder inequality. Moreover, note that the second derivatives that occur in entries of Hi are func-
tions of posterior moments. By Lemma SM6.17, under G0, these posterior moments are bounded by above
by corresponding moments of Ẑi(η̃i). Hence,

1(An)∥Hi∥∞ ≲H 1(An)
(
Ẑi(η̃i) ∨ 1

)4
≲H (Zi ∨ 1)4. (SM6.32)

Hence, 1(An)|R2| ≲H ∆2
n
1
n

∑n
i=1(Zi ∨ 1)4. Note that Chebyshev’s inequality implies that there exists

some choice CH such that

P

[
1

n

n∑
i=1

(Zi ∨ 1)4 ≥ CH

]
≤ 1

n
,

since Var( 1n
∑n

i=1(Zi ∨ 1)4) ≲H
1
n . Hence,

P
(
∥η̂ − η∥∞ ≤ ∆n, Zn ≤Mn, |R2| ≳H ∆2

n

)
≤ 1

n
. □

SM6.8 Derivative computations. In the remainder of the proof, it is sometimes useful to relate the deriva-
tives of ψi to EG,η. We compute the following derivatives. Since they are all evaluated at G, η, we let
ν̂ = ν̂i(η) and ẑ = Ẑi(η) as a shorthand.

∂ψi
∂mi

∣∣∣∣
η,G

= − 1

si

f ′G,ν̂(ẑ)

fG,ν̂(ẑ)
(SM6.33)

=
si
σ2i

EG,ν̂ [Z − τ | ẑ] (SM6.34)

∂ψi
∂si

∣∣∣∣
η,G

=
1

σiν̂i(η)fG,ν̂(η)(Ẑi(η))

∫
(Ẑi(η)− τ)τφ

(
Ẑi(η)− τ
ν̂i(η)

)
1

ν̂i(η)
G(dτ)︸ ︷︷ ︸

Qi(Zi,η,G)

(SM6.35)

=
1

σiν̂
EG,ν̂ [(Z − τ)τ | ẑ] (SM6.36)
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∂2ψi
∂m2

i

∣∣∣∣
η,G

=
1

s2i

f ′′G,ν̂(ẑ)
fG,ν̂(ẑ)

−

(
f ′G,ν̂(ẑ)

fG,ν̂(ẑ)

)2
 (SM6.37)

=
1

s2i

[
1

ν̂4
EG,ν̂ [(τ − Z)2 | ẑ]−

1

ν̂2
− 1

ν̂4
(EG,ν̂ [(τ − Z) | ẑ])2

]
(SM6.38)

∂2ψi
∂mi∂si

∣∣∣∣
η,G

=

(
1

σ2i
EG,ν̂ [(Z − τ)τ | ẑ]−

1

s2i

)
1

ν̂2
EG,ν̂ [(τ − Z) | ẑ] +

EG,ν̂ [(τ − Z)2τ | ẑ]
ν̂σisi

(SM6.39)

∂2ψi
∂s2i

∣∣∣∣
η,G

=
1

σ2i

{
EG,ν̂

[(
s2i
σi

(Z − τ)2 − 1

)
τ2 | ẑ

]
− 1

ν̂2
(EG,ν̂ [(Z − τ)τ | ẑ])2

}
(SM6.40)

It is also useful to note that

f ′G,ν(z)

fG,ν(z)
=

1

ν2
EG,ν [(τ − Z) | z] (SM6.41)

f ′′G,ν(z)

fG,ν(z)
=

1

ν4
EG,ν [(τ − Z)2 | z]−

1

ν2
(SM6.42)

SM6.9 Complexity of P(R) under moment-based distance. The following is a minor generalization of
Lemma 4 and Theorem 7 in Jiang (2020). In particular, Jiang (2020)’s Lemma 4 reduces to the case q = 0

below, and Jiang (2020)’s Theorem 7 relies on the results below for q = 0, 1. The proof largely follows the
proofs of these two results of Jiang (2020).

We first state the following fact readily verified by differentiation.

Lemma SM6.8. For all integer m ≥ 0:

sup
t∈R
|tmφ(t)| = mm/2φ(

√
m).

As a corollary, there exists absolute Cm > 0 such that t 7→ tmφ(t) is Cm-Lipschitz.

Proposition SM6.1. Fix some q ∈ N ∪ {0} and M > 1. Consider the pseudometric

d
(q)
∞,M (G1, G2) = max

i∈[n]
max
0≤v≤q

sup
|x|≤M

∣∣∣∣∫ (u− x)v

νvi
φ

(
x− u
νi

)
(G1 −G2)(du)

∣∣∣∣︸ ︷︷ ︸
dq,i,m(G1,G2)

.

Let νℓ, νu be the lower and upper bounds of νi. Then, for all 0 < δ < exp(−q/2) ∧ e−1,

logN(δ logq/2(1/δ),P(R), d(q)∞,M ) ≲q,νu,νℓ log
2(1/δ)max

(
M√

log(1/δ)
, 1

)
.

Proof. The proof strategy is as follows. First, we discretize [−M,M ] into a union of small intervals Ij . Fix
G. There exists a finitely supported distribution Gm that matches moments of G on every Ij . It turns out
that such a Gm is close to G in terms of ∥·∥q,∞,M . Next, we discipline Gm by approximating Gm with
Gm,ω, a finitely supported distribution supported on the fixed grid {kω : k ∈ Z} ∩ [−M,M ]. Finally, the
set of all Gm,ω’s may be approximated by a finite set of distributions, and we count the size of this finite set.

SM6.9.1 Approximating G with Gm. First, let us fix some ω < φ(
√
q) ∧ φ(1).
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Let a = νu
νℓ
φ+(ω) ≥ 1. Let Ij = [−M + (j − 2)aνℓ,−M + (j − 1)aνℓ] be such that

I = [−M − aνℓ,+M + aνℓ] ⊂
⋃
j

Ij

where Ij is a width aνℓ interval. Let j∗ = ⌈2Maνℓ + 2⌉ be the number of such intervals.
There exists by Carathéodory’s theorem a distribution Gm with support on I and no more than

m = (2k∗ + q + 1)j∗ + 1

support points such that the moments match∫
Ij

ukdG(u) =

∫
Ij

ukdGm(u) for all k = 0, . . . , 2k∗ + q and j = 1, . . . , j∗.

for some k∗ to be chosen later.
Then, for some x ∈ Ij ∩ [−M,M ], we have

dq,i,M (G,Gm) ≤ max
0≤v≤q

[∣∣∣∣∫
(Ij−1∪Ij∪Ij+1)C

(
u− x
νi

)v
φ

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣ (SM6.43)

+

∣∣∣∣∫
Ij−1∪Ij∪Ij+1

(
u− x
νi

)v
φ

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣
]

(SM6.44)

Note that tvφ(t) is a decreasing function for all t >
√
v. Note that ω < φ(

√
q) implies that aνu/νℓ =

φ+(ω) >
√
q. Hence, the integrand in (SM6.43) is bounded by φ+(ω)

vω, as |u−x|
νi
≥ aνℓ/νu = φ+(ω):

(SM6.43) ≤ 2 max
0≤v≤q

φ+(ω)
vω = 2φ+(ω)

qω.

For (SM6.44), note that

φ(t) =

∞∑
k=0

(−t2/2)k√
2πk!

=

k∗∑
k=0

(−t2/2)k√
2πk!

+R(t)

Thus the second term (SM6.44) can be written as the maximum-over-v of the absolute value of

k∗∑
k=0

∫ (
x−u
νi

)v+2k
(−1/2)k

√
2πk!

[G(du)−Gm(du)] +
∫
R

(
x− u
νi

)(
x− u
νi

)v
[G(du)−Gm(du)]

The first term in the line above is zero since the moments match up to 2k∗+q. Therefore (SM6.44) is equal to

(SM6.44) = max
0≤v≤q

∣∣∣∣∫
(Ij−1∪Ij∪ICj+1)

(
u− x
νi

)v
R

(
x− u
νi

)
(G(du)−Gm(du))

∣∣∣∣. (SM6.45)

We know that, since φ(t) has alternating-signed Taylor expansion, its remainder is bounded by the first
term of truncation

|R(t)| ≤ (t2/2)k
∗+1

√
2π(k∗ + 1)!

.

We can bound |u−xνi | ≤ 2aνℓ/νi ≤ 2a. Hence the integral (SM6.45) is upper bounded by

(SM6.44) ≤ 2 · (2a)q ·
(
(2a)2/2

)k∗+1

√
2π(k∗ + 1)!

((2a)v ≤ (2a)q)
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≤ 2(2a)q

(2π)
√
k∗ + 1

(
2a2

k∗ + 1
e

)k∗+1

(Stirling’s formula (k∗ + 1)! ≥
√
2π(k∗ + 1)

(
k∗+1
e

)k∗+1
)

≤ (2a)q

π
√
k∗ + 1

(e
3

)k∗+1
(Choosing k∗ + 1 ≥ 6a2 ≥ 6)

≤ (2a)q

π
√
k∗ + 1

exp

(
−1

2

k∗ + 1

6

)
((e/3)6 ≤ e−1/2)

≤ (2a)q
√
k∗ + 1

√
π/2

φ(aνℓ/νu)︸ ︷︷ ︸
φ(φ+(ω))

(k∗ + 1 ≥ 6a2 ≥ 6(aνℓ/νu)
2)

≤ (2a)q
√
k∗ + 1

√
π/2

ω

≤ 2q√
3π

(
νu
νℓ

)q−1

φq−1
+ (ω)ω (k∗ + 1 ≥ 6a2)

This bounds (SM6.43) + (SM6.44) uniformly over |x| ≤M . Therefore,

dq,i,M (G,Gm) ≤
(
2 +

2q√
3π

(νu/νℓ)
q−1

)
· φq+(ω)ω ≲q,νu,νℓ log

q/2(1/ω)ω.

SM6.9.2 Disciplining Gm onto a fixed grid. Now, consider a gridding of Gm via Gm,ω. We construct Gm,ω
to be the following distribution. For a draw ξ ∼ Gm, let ξ̃ = ω sgn(ξ)⌊|ξ|/ω⌋. We let Gm,ω be the distri-
bution of ξ̃. Gm,ω has at most m = (2k∗ + q + 1)j∗ + 1 support points by construction, and all its support
points are multiples of ω.

Since ∫
g(x, u)Gm,ω(du) =

∫
g(x, ω sgn(u)⌊|u|/ω⌋)Gm(du)

we have that∣∣∣∣∫ g(x, u)Gm,ω(du)−
∫
g(x, u)Gm(du)

∣∣∣∣ ≤ ∫ |g(x, ω sgn(u)⌊|u|/ω⌋)− g(x, u)|Gm(du)

In the case of g(x, u) = ((x− u)/νi)v φ((x− u)/νi), this function is Lipschitz by Lemma SM6.8, we thus
have that,

dq,i,M (Gm, Gm,ω) ≤
∫
Cq

ω

νi
Gm(du) ≲νℓ,q ω.

So far, we have shown that there exists a distribution with at most m support points, supported on the
lattice points {jω : j ∈ Z, |jω| ∈ I}, that approximates G up to

Cq,νu,νℓω logq/2(1/ω)

in d(q)∞,M (·, ·).

SM6.9.3 Covering the set of Gm,ω. Let ∆m−1 be the (m − 1)-simplex of probability vectors in m dimen-
sions. Consider discrete distributions supported on the support points of Gm,ω, which can be identified with
a subset of ∆m−1. Thus, there are at most N(ω,∆m−1, ∥·∥1) such distributions that form an ω-net in ∥·∥1.
Now, consider a distribution G′

m,ω where

∥G′
m,ω −Gm,ω∥1 ≤ ω.
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Since tqφ(t) is bounded, we have that

∥G′
m,ω −Gm,ω∥q,i,M ≤ ω max

0≤v≤q
vv/2φ(

√
v) ≲q ω

by Lemma SM6.8.
There are at most (

1 + 2⌊(M + aνℓ)/ω⌋
m

)
configurations of m support points. Hence there are a collection of at most(

1 + 2⌊(M + aνℓ)/ω⌋
m

)
N(ω,∆m−1, ∥·∥1)

distributions G where
min
H∈G
∥G−H∥q,∞,M ≤ Cq,νu,νℓ log(1/ω)

q/2ω︸ ︷︷ ︸
ω∗

.

SM6.9.4 Putting things together. In other words,

N(ω∗,P(R), ∥·∥q,∞,M ) ≤
(
1 + 2⌊(M + aνℓ)/ω⌋

m

)
N(ω,∆m−1, ∥·∥1)

≤
(
(ω + 2)(ω + 2(M + aνℓ))e

m

)m
ω−2m(2πm)−1/2 ((6.24) in Jiang (2020))

Since ω < 1 and m ≥ 212a2+3+q
aνℓ

(M + aνℓ), the first term is of the form Cm:

(ω + 2)(ω + 2(M + aνℓ))e

m
≤ 3e

m
(1 + 2(M + aνℓ)) ≲

aνℓ
12a2 + 3 + q

≲ νℓ.

Therefore

logN(ω∗,P(R), ∥·∥q,∞,M ) ≲ m · | log(1/ω)|+m| log νℓ| ≲νℓ,νu,q m log(1/ω).

Finally, since m = (2k∗ + q + 1)j∗ + 1. Recall that we have required k∗ + 1 ≥ 6a2, and it suffices to
pick k∗ = ⌈6a2⌉. Then

m ≲q,νu,νℓ log(1/ω)max

(
M√

log(1/ω)
, 1

)
.

Hence

logN(ω∗,P(R), ∥·∥q,∞,M ) ≲q,νu,νℓ log(1/ω)
2max

(
M√

log(1/ω)
, 1

)
.

Lastly, let K equal the constant in ω∗ = K log(1/ω)q/2ω. Note that we can take K ≥ 1. For some c > 1

such that log(cK)q/2 < c, we plug in ω = δ
cK such that whenever δ < cK(φ(1) ∧ φ(√q)) ∧ e−q/2, the

covering number bound holds for

ω∗ =
δ

c
log(cK/δ)q/2 ≤ δ log(1/δ)q/2.

In this case,

N
(
δ log(1/δ)q/2,P(R), ∥·∥q,∞,M )

)
≤ N

(
ω∗ log(1/δ)q/2,P(R), ∥·∥q,∞,M )

)
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≲q,νu,νℓ log(1/ω)
2max

(
M√

log(1/ω)
, 1

)

≲q,νu,νℓ log(1/δ)
2max

(
M√

log(1/δ)
, 1

)
This bound holds for all sufficiently small δ. Since δ log(1/δ)q/2 is increasing over (0, e−q/2 ∧ e−1) and the
right-hand side does not vanish over the interval, we can absorb larger δ’s into the constant. □

As a consequence, we can control the covering number in terms of dk,∞,M for k ∈ {m, s}

Proposition SM6.2. Consider d(q)∞,M in Proposition SM6.1, ds,∞,M in (SM6.28), and dm,∞,M in (SM6.25)
for some M > 1. Then

d
(2)
∞,M (H1, H2) ≤ δ =⇒ ds,∞,M (H1, H2) ≲H

M
√

log(1/ρn) + log(1/ρn)

ρn
δ.

and

d
(2)
∞,M (H1, H2) ≤ δ =⇒ dm,∞,M (H1, H2) ≲H

√
log(1/ρn)

ρn
δ.

As a corollary, for all δ ∈ (0, 1/e),

logN

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dm,∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)

logN

(
δ log(1/δ)

ρn

(
M
√
log(1/ρn) + log(1/ρn)

)
,P(R), ds,∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)
.

Proof. Recall that Ds,i(zi, G, η0, ρn) =
si
σ2
i

Qi(Zi,η0,G)
fi,G∨ ρnνi

from (SM6.5). Hence

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)|

≲H
1

fi,G1 ∨
ρn
νi

|Qi(Zi, η0, G1)−Qi(Zi, η0, G2)|+ |Qi(Zi, η0, G2)|

∣∣∣∣∣ 1

fi,G1 ∨
ρn
νi

− 1

fi,G1 ∨
ρn
νi

∣∣∣∣∣
≲H

1

ρn
|fi,G1EG1,νi [(Z − τ)τ | z]− fi,G2EG2,νi [(Z − τ)τ | z]|

+
M
√
log(1/ρn) + log(1/ρn)

ρn
|fi,G1 − fi,G2 |

where the last inequality follows from the definition of Qi and Lemma SM6.12.
Note that

fi,G1EG1,νi [(Z − τ)τ | z] = fi,G1EG1,νi [(Z − τ)2 | z]− zfi,G1EG1,νi [(Z − τ) | z].

Thus we can further upper bound, by the bound on d(2)∞,M ,

|EG1,νi [(Z − τ)τ | z]−EG2,νi [(Z − τ)τ | z]| ≲H δ(1 +M) ≲Mδ.

Similarly, |fi,G1 − fi,G2 | ≲H δ. Hence,

|Ds,i(z,G1, η0, ρn)−Ds,i(z,G2, η0, ρn)| ≲H

{
M

ρn
+ ρ−1

n

(
M
√
log(1/ρn) + log(1/ρn)

)}
δ

97



≲H
M
√
log(1/ρn) + log(1/ρn)

ρn
δ.

Similarly, recall (SM6.4), and we have

|Dm,i(z,G1, η0)−Dm,i(z,G2, η0)| ≲H
1

ρn
δ +

1

ρn

√
log(1/ρn)δ ≲

1

ρn

√
log(1/ρn)

by a similar calculation, involving Lemma SM6.9.
Thus, for the “corollary” part, note that, letting CH be the constant in the bound, taken to be at least 1:

N

(
δ log(1/δ)

ρn

√
log(1/ρn),P(R), dm,∞,M

)
≤ N

(
δ

CH
log(1/(δ/(CH))),P(R), d(2)∞,M

)
≲H log(1/δ)2max

(
1,

M√
log(1/δ)

)
.

for all 0 < δ < 1/e. Similarly for the covering number in ds,∞,M . □

SM6.10 Auxiliary lemmas.

Lemma OA3.1. Suppose |Zn| = maxi∈[n] |Zi| ∨ 1 ≤Mn, ∥ŝ− s0∥∞ ≤ ∆n, and ∥m̂−m0∥∞ ≤ ∆n. Let
Ĝn satisfy Assumption 1. Then, under Assumption SM6.1,56

(1) |Ẑi ∨ 1| ≲H Mn

(2) There exists CH such that with ρn = 1
n3 exp

(
−CHM

2
n∆n

)
∧ 1
e
√
2π

, fĜn,νi(Zi) ≥
ρn
νi
.

(3) The choice of ρn satisfies log(1/ρn) ≍H log n, φ+(ρn) ≍H
√
log n, and ρn ≲H n−3.

Proof. Observe that |Ẑi|∨1 ≲σℓ,σu,s0ℓ,s0u (1+∆n)Mn+∆n ≲ (1+∆n)Mn by Lemma SM6.10(3). Hence
by Assumption SM6.1, |Ẑi| ∨ 1 ≲H Mn.

For (2), we note by Theorem 5 in Jiang (2020),

fĜn,ν̂i(Ẑi) ≥
1

n3ν̂i

thanks to κn in (3.3). That is, ∫
φ

(
Ẑi − τ
ν̂i

)
Ĝn(dτ) ≥

1

n3
.

Now, note that
Ẑi − τ
ν̂i

=
Zi − τ
νi

+
m0i − m̂i

σi
+

1

σi
(si − s0i)τ ≡

Zi − τ
νi

+ ξ(τ) (SM6.46)

where |ξ(τ)| ≲H ∆nMn over the support of τ under Ĝn, under our assumptions.
Then, for all Zi, since |Zi| ≤Mn by assumption,

φ

(
Ẑi − τ
ν̂i

)
= φ

(
Zi − τ
νi

)
exp

(
−1

2
ξ2(τ)− ξ(τ)Zi − τ

νi

)
≤ φ

(
Zi − τ
νi

)
exp

(
CH∆nMn

∣∣∣∣Zi − τνi

∣∣∣∣)
(CH is defined by optimizing over |ξ(τ)| ≲H ∆nMn)

56This assumption is satisfied with our choices in (OA3.4).
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≤ φ
(
Zi − τ
νi

)
exp

(
CH∆nM

2
n

)
. (

∣∣∣Zi−τνi

∣∣∣ ≲H Mn)

Therefore, ∫
φ

(
Zi − τ
νi

)
Ĝn(dτ) ≥

1

n3
e−CH∆nM2

n .

Dividing by νi on both sides finishes the proof of (2). Claim (3) is immediate by calculating log(1/ρn) =(
3 log n− CHM

2
n∆

2
n

)
∨ log(e

√
2π) ≲H log n and apply Assumption SM6.1(1) to obtain that ∆nM

2
n ≲H

1. □

Lemma SM6.9 (Lemma 2 Jiang (2020)). For all x ∈ R and all ρ ∈ (0, 1/
√
2πe),∣∣∣∣ ν2f ′H,ν(x)

(ρ/ν) ∨ fH,ν(x)

∣∣∣∣ ≤ νφ+(ρ).

Moreover, for all x ∈ R and all ρ ∈ (0, e−1/
√
2π),∣∣∣∣

(
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)(
νfH,ν(x)

(νfG,ν(x)) ∨ ρ

)∣∣∣∣ ≤ φ2
+(ρ),

where we recall φ+ from (OA3.3).

Proof. The first claim is immediate from Lemma 2 in Jiang (2020). The second claim follows from parts of
the proof. Lemma 1 in Jiang (2020) shows that

0 ≤
ν2f ′′H,ν(x)

fH,ν(z)
+ 1 ≤ log

1

2πν2fH,ν(z)2︸ ︷︷ ︸
φ2
+(νfH,ν(z))

.

Case 1 (νfH,ν(x) ≤ ρ < e−1/
√
2π): Observe that t log 1

2πt2
is increasing over t ∈ (0, e−1(2π)−1/2).

Hence, (
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)
νfH,ν(x) ≤ νfH,ν log

1

2πν2fH,ν(z)2
≤ ρ log 1

2πρ2
.

Dividing by (νf) ∨ ρ = ρ confirms the bound for νf < ρ.
Case 2 (νf > ρ): Since log 1

2πt2
is decreasing in t, we have that∣∣∣∣

(
ν2f ′′H,ν(x)

fH,ν(z)
+ 1

)(
νfH,ν(x)

(νfG,ν(x)) ∨ ρ

)∣∣∣∣ = ν2f ′′H,ν(x)

fH,ν(z)
+ 1 ≤ φ2

+(νfH,ν) ≤ log
1

2πρ2
. □

Lemma SM6.10. The following statements are true:

(1) Under Assumption 4, 1/ν̂i ≲s0u,σℓ 1 and ν̂i ≲s0ℓ,σu 1

(2) Under Assumption 4, |1− s0i
ŝi
| ≲s0ℓ ∥ŝ− s0∥∞

(3) Under Assumption 4,

max
i
|Ẑi| ≲σℓ,σu,s0ℓ,s0u (1 + ∥ŝ− s0∥∞)Zn + ∥m̂−m0∥∞

where Zn is defined in (A.1).

Proof. (1) Immediate by 1/ν̂i = ŝi/σi and P[s0ℓ < ŝi < s0u] = 1.
(2) Immediate by observing that |1− s0i

ŝi
| = | ŝi−s0iŝi

| and P[s0ℓ < ŝi < s0u] = 1.
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(3) Immediate by Ẑi = s0i
ŝi
Zi + [m0i − m̂i]

□

Lemma SM6.11 (Zhang (1997), p.186). Let f be a density and let σ(f) be its standard deviation. Then,
for any M, t > 0, ∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤ σ(f)2

M2
+ 2Mt.

In particular, choosing M = t−1/3σ(f)2/3 gives∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤ 3t2/3σ2/3.

Proof. Since the value of the integral does not change if we shift f(z) to f(z − c), it is without loss of
generality to assume that Ef [Z] = 0.∫ ∞

−∞
1(f(z) ≤ t)f(z) dz ≤

∫ ∞

−∞
1(f(z) ≤ t, |z| < M)f(z) dz +

∫ ∞

−∞
1(f(z) ≤ t, |z| > M)f(z) dz

≤
∫ M

−M
t dz + P(|Z| > M)

≤ 2Mt+
σ2(f)

M2
. (Chebyshev’s inequality)

□

Lemma SM6.12. Recall that Qi(z, η,G) =
∫
(z − τ)τφ

(
z−τ
νi(η)

)
1

νi(η)
G(dτ). Then, for any G, z and

ρn ∈ (0, e−1/
√
2π), ∣∣∣∣ Qi(z, η0, G)

fG,νi(z) ∨ (ρn/νi)

∣∣∣∣ ≤ φ+(ρn) (νi|z|+ νiφ+(ρn)) . (SM6.47)

Proof. We can write

Qi(z, η0, G) = fG,νi(z)
{
zEG,νi [(z − τ) | z]−EĜn,νi [(z − τ)

2 | z]
}
.

From Lemma SM6.9,
fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
EG,νi [(z − τ) | z] ≤ νiφ+(ρn)

and

fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
EG,νi [(z − τ)2 | z] = ν2i

(
ν2i f

′′
i,G

fi,G
+ 1

)
fG,νi(z)

fG,νi(z) ∨ (ρn/νi)
≤ ν2i φ2

+(ρn).

Therefore, ∣∣∣∣ Qi(z, η0, G)

fG,νi(z) ∨ (ρn/νi)

∣∣∣∣ ≤ φ+(ρn)νi (|z|+ φ+(ρn)) .

□

Lemma SM6.13. Under the assumptions in Lemma OA3.1 and Assumption 4, suppose η̃i lies on the line
segment between η0 and η̂i and define ν̃i, m̃i, s̃i, Z̃i accordingly. Then, the second derivatives (SM6.37),
(SM6.39), (SM6.40), evaluated at η̃i, Ĝn, Z̃i, satisfy

|(SM6.37)| ≲H log n

100



|(SM6.39)| ≲H Mn log n

|(SM6.40)| ≲H M2
n log n.

Proof. First, we show that
| log(fĜn,ν̃i(Z̃i)ν̃i)| ≲H log n. (SM6.48)

Observe that we can write Ẑi = s̃iZ̃i+m̃i−m̂i
ŝi

. where ∥s̃ − ŝ∥∞ ≤ ∆n and ∥m̃ − m̂∥∞ ≤ ∆n. This shows
that |Z̃i| ≲H Mn under the assumptions since ŝ > sℓ. Having verified that |Z̃i| ≲H Mn, note that by the
same argument in (SM6.46) in Lemma OA3.1, we have that

φ

(
Ẑi − τ
ν̂i

)
≤ φ

(
Z̃i − τ
ν̃i

)
eCH∆nM2

n . =⇒ ν̃ifĜ(i),ν̃i
(Z̃i) ≥

1

n3
e−CH∆nM2

n .

This shows (SM6.48).
Now, observe that

EĜn,ν̃ [(τ − Z)
2 | Z̃i] ≲H log

 1

ν̃ifĜ(i),ν̃i
(Z̃i)

 ≲H log n

EĜn,ν̃ [|τ − Z| | Z̃i] ≲H

√√√√√log

 1

ν̃ifĜ(i),ν̃i
(Z̃i)

 ≲H
√

log n

by Lemma SM6.9, since we can always choose ρ = ν̃ifĜ(i),ν̃i
(Z̃i) ∧ 1√

2πe
. Similarly, by Lemma SM6.12,

and plugging in ρ = ν̃ifĜ(i),ν̃i
(Z̃i) ∧ 1√

2πe
,∣∣∣EĜn,ν̃ [(τ − Z)Z | Z̃i]∣∣∣ ≲H

√
log n|Z̃i|+ log n ≲H Mn

√
log n.

Observe that ∣∣∣EĜn,ν̃i [(τ − Z)2τ | Z̃i]∣∣∣ ≲H MnEĜn,ν̃i [(τ − Z)
2] ≲H Mn log n.

since |τ | ≲H Mn under Ĝn. Similarly,

EĜn,ν̃i [(Z − τ)
2τ2 | Z̃i] ≲H M2

n log n EĜn,ν̃i [τ
2 | Z̃i] ≲H M2

n.

Plugging these intermediate results into (SM6.37), (SM6.39), (SM6.40) proves the claim. □

Lemma SM6.14. Let X1, . . . , XJ be subgaussian random variables with K = maxi∥Xi∥ψ2 , not necessar-
ily independent. Then for some universal C, for all t ≥ 0,

P

[
max
i
|Xi| ≥ CK

√
log J + CKt

]
≤ 2e−t

2
.

Proof. By (2.14) in Vershynin (2018), P(|Xi| > t) ≤ 2e
−ct2/∥Xi∥2ψ2 ≤ 2e−ct

2/K for some universal c. By
a union bound,

P

[
max
i
|Xi| ≥ Ku

]
≤ 2 exp

(
−cu2 + log J

)
Choose u = 1√

c
(
√
log J + t) so that cu2 = log J + t2 + 2t

√
log J ≥ log J + t2. Hence

2 exp
(
−cu2 + log J

)
≤ 2e−t

2
.
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Implicitly, C = 1/
√
c. □

Lemma SM6.15. Suppose Z has simultaneous moment control E[|Z|p]1/p ≤ Ap1/α. Then

P(|Z| > M) ≤ exp (−CA,αMα) .

As a corollary, suppose Z ∼ fG0,νi(·) and G0 obeys Assumption 2, then

P(|Z| > M) ≤ exp (−CA0,α,νuM
α) .

Proof. Observe that

P(|Z| > M) = P(|Z|p > Mp) ≤

{
Ap1/α

M

}p
. (Markov’s inequality)

Choose p = (M/(eA))α such that{
Ap1/α

M

}p
= exp (−p) = exp

(
−
(

1

eA

)α
Mα

)
. □

Lemma SM6.16. Let E be some event and assume that

P(E,A > a) ≤ p1 P(E,B > b) ≤ p2

Then P(E,A+B > a+ b) ≤ p1 + p2

Proof. Note that A+B > a+ b implies that one of A > a and B > b occurs. Hence

P(E,A+B > a+ b) ≤ P({E,A > a} ∪ {E,B > b}) ≤ p1 + p2

by union bound. □

Lemma SM6.17. Let τ ∼ G0 where G0 satisfies Assumption 2. Let Z | τ ∼ N (τ, ν2). Then the posterior
moment is bounded by a power of |z|:

E[|τ |p | Z = z] ≲p,α,A0 (|z| ∨ 1)p.

Proof. Let M = |z| ∨ 2. We write

E[|τ |p | Z = z] =
1

fG0,ν(z)

∫
|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ).

Note that we can decompose based on |τ | > 3M :∫
|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ) ≤ (3M)pfG0,ν(z) +

∫
1(|τ | > 3M)|τ |pφ

(
z − τ
ν

)
1

ν
G0(dτ)

≤ (3M)pfG0,ν(z) +

∫
|τ |>3M

|τ |pG0(dτ) ·
1

ν
φ (|2M |/ν)

(|z − τ | ≥ 2M when |τ | > 3M )

Also note that

fG0,ν(z) =

∫
φ

(
z − τ
ν

)
1

ν
G0(dτ) ≥

1

ν
φ (|2M |/ν)G0([−M,M ]) (|z − τ | ≤ 2M if τ ∈ [−M,M ])
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Hence,

E[|τ |p | Z = z] ≤ (3M)p +

∫
|τ |pG0(dτ)

G0([−M,M ])

Since G0 is mean zero and variance 1, by Chebyshev’s inequality, G0([−M,M ]) ≥ G0([−2, 2]) ≥ 3/4.
Hence

E[|τ |p | Z = z] ≲p,α,A0 M
p ≲p,α,A0 (|z| ∨ 1)p,

since we have simultaneous moment control by Assumption 2. □

Appendix SM7. A large-deviation inequality for the average Hellinger distance

Theorem SM7.1. For some n ≥ 7, let τ1, . . . , τn | (ν21 , . . . , ν2n)
i.i.d.∼ G0 where G0 satisfies Assumption 2.

Let νu = maxi νi and νℓ = mini νi. Assume Zi | τi, ν2i ∼ N (τi, ν
2
i ). Fix positive sequences γn, λn → 0

with γn, λn ≤ 1 and constant ϵ > 0. Fix some positive constant C∗. Consider the set of distributions that
approximately maximize the likelihood

A(γn, λn) =
{
H : Subn(H) ≤ C∗ (γ2n + h(fH,·, fG0,·)λn

)}
.

Also consider the set of distributions that are far from G0 in h:

B(t, λn, ϵ) =
{
H : h(fH,·, fG0,·) ≥ tBλ1−ϵn

}
with some constant B to be chosen. Assume that for some Cλ,

λ2n ≥
(
Cλ
n

(log n)1+
α+2
2α

)
∨ γ2n. (SM7.1)

Then the probability that A ∩B is nonempty is bounded for t > 1: There exists a choice of B that depends
only on νℓ, νu, C∗, Cλ such that

P [A(γn, λn) ∩B(t, λn, ϵ) ̸= ∅] ≤ (log2(1/ϵ) + 1)n−t
2
. (SM7.2)

Corollary OA3.1. Assume Assumptions 1 to 4 hold and suppose ∆n,Mn take the form (OA3.4). Define
the rate function

δn = n−p/(2p+1)(log n)
2+α
2α

+β. (OA3.6)

Then, there exists some constantBH, depending solely on C∗
H in Corollary SM6.1, β, and p, νℓ, νu such that

P
[
An, h(fĜn,·, fG0,·) > BHδn

]
≤
(
log log n

log 2
+ 10

)
1

n
.

Proof. Let γ = 2+α
2α + β. We first note that, for εn in (SM6.2), the choices

λn = n−p/(2p+1)(log n)
2+α
2α

+β ∧ 1 = γn

do satisfy (SM7.1). Note that the choices of λn, γn are such that εn ≤ CH(λnh+ γ2n)

The event
{
An, h(fĜn,·, fG0,·) > tδn

}
is a subset of the union of

E1 =
{
An,Subn(Ĝn) > C∗

Hεn

}
and

E2 =
{
An, Subn(Ĝn) ≤ C∗

Hεn, h(fĜn,·, fG0,·) > tn−p/(2p+1)(log n)γ
}
.

103



Thus P
[
An, h(fĜn,·, fG0,·) > tδn

]
≤ P(E1) + P(E2). Corollary SM6.1 implies that P(E1) ≤ 9/n.

Now, note that

P(E2) ≤ P
[
An, Subn(Ĝn) ≤ C∗

HCH(λnh+ γ2n), h ≥ tλn
]
.

Observe that, for ϵ = 1/ log(n)

tλ1−ϵn = t
[
n
− p

2p+1
(1−ϵ)

(log n)γ(1−ϵ) ∧ 1
]

= t
(
n
− p

2p+1 (log n)γ
[
n

ϵp
2p+1 (log n)−γϵ

]
∧ 1
)

= t
(
n
− p

2p+1 (log n)γ
[
e

p
2p+1 (log n)−γϵ

]
∧ 1
)

≤ Cp,γtλn (e
p

2p+1 (log n)−γϵ is bounded by a constant)

Thus, by Theorem SM7.1, for all sufficiently large t,

P(E2) ≤ P

[
Subn(Ĝn) ≤ C∗

HCH(λnh+ γ2n), h ≥
t

Cp,γ
λ1−ϵn

]
≤ P

[
A(γn, λn) ∩B

(
t

BCp,λ
, λn, ϵ

)
̸= ∅

]
≤ (log2(log n) + 1)n−t

2/CH

We can pick t = BH sufficiently large such that n−t
2/CH ≤ 1/n and

P
[
An, h(fĜn,·, fG0,·) > tδn

]
≤ P(E1) + P(E2) ≤

(
log log n

log 2
+ 10

)
1

n
. □

SM7.1 Proof of Theorem SM7.1.

SM7.1.1 Decompose B(t, λn, ϵ). We decompose B(t, λn, ϵ) ⊂
⋃K
k=1Bk(t, λn) where, for some constant

B to be chosen,
Bk =

{
H : h (fH,·, fG0,·) ∈

(
tBλ1−2−k

n , tBλ1−2−k+1

n

]}
.

The relation B(t, λn, ϵ) ⊂
⋃
k Bk holds if we take K = ⌈| log2(1/ϵ)|⌉.

In the remainder, we will bound

P(A(γn, λn) ∩Bk(t, λn) ̸= ∅) ≤ n−t2

which becomes the bound (SM7.2) by a union bound. This argument follows the argument for Theorem
6 in Soloff et al. (2021) (arXiv: 2109.03466v1) and Theorem 4 in Jiang (2020). For k ∈ [K], define
µn,k = Bλ1−2−k+1

n such that Bk =
{
H : h (fH,·, fG0,·) ∈ (tµn,k+1, tµn,k]

}
. To that end, fix some k.

SM7.1.2 Construct a net for the set of densities fG. Fix a positive constant M and define the pseudonorm

∥G∥∞,M = max
i∈[n]

sup
y∈[−M,M ]

fG,νi(y).

Note that ∥G∥∞,M is proportional to ∥G∥0,∞,M defined in Proposition SM6.1. Fix ω = 1
n2 > 0 and con-

sider an ω-net for the distribution P(R) under ∥·∥∞,M . Let N = N(ω,P(R), ∥·∥∞,M ) and the ω-net is the
distributions H1, . . . ,HN . For each j, let Hk,j be the distribution with

∥Hk,j −Hj∥∞,M ≤ ω h(fHk,j ,·, fG0,·) ≥ tµn,k+1 (SM7.3)
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if it exists, and let Jk collect the indices j for which Hj,k exists.

SM7.1.3 Project to the net and upper bound the likelihood. Fix a distribution H ∈ Bk(t, λn). There
exists some Hj where ∥H − Hj∥∞,M ≤ ω. Moreover, H serves as a witness that Hk,j exists, with
∥H −Hk,j∥∞,M ≤ 2ω.

We can construct an upper bound for fH,νi(z) via

fH,νi(z) ≤

fHk,j ,νi(z) + 2ω |z| < M

1√
2πνi

|z| ≥M
.

Define v(z) = ω1(|z| < M) + ωM2

z2
1(|z| ≥M). Observe that

fH,νi(z) ≤
fHk,j ,νi(z) + 2v(z)
√
2πνiv(z)

if |z| > M

fH,νi(z) ≤ fHk,j ,νi(z) + 2v(z) if |z| ≤M.

Hence, the likelihood ratio between H and G0 is upper bounded:
n∏
i=1

fH,νi(Zi)

fG0,νi(Zi)
≤

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

∏
i:|Zi|>M

1√
2πνiv(Zi)

≤

(
max
j∈Jk

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

) ∏
i:|Zi|>M

1√
2πνiv(Zi)

If H ∈ A(t, γn, λn), then the likelihood ratio is also lower bounded:
n∏
i=1

fH,νi(Zi)

fG0,νi(Zi)
≥ exp

(
−nC∗(γ2n + h (fH,·, fG0,·)λn)

)
≥ exp

(
−ntC∗(tγ2n + h (fH,·, fG0,·)λn)

)
(t > 1)

≥ exp
(
−nC∗(t2γ2n + thλn)

)
≥ exp

(
−nC∗(t2γ2n + t2µn,kλn)

)
Hence,

P [A(t, γn, λn) ∩Bk(t, λn) ̸= ∅]

≤ P

{(
max
j∈Jk

n∏
i=1

fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

) ∏
i:|Zi|>M

1√
2πνiv(Zi)

≥ exp
(
−nt2C∗(γ2n + µn,kλn)

)}

≤ P

[
max
j∈Jk

n∏
i=1

fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)
≥ e−nt2aC∗(γ2n+µn,kλn)

]
(SM7.4)

+ P

 ∏
i:|Zi|>M

1√
2πνiv(Yi)

≥ ent2(a−1)C∗(γ2n+µn,kλn)

 (SM7.5)

The second inequality follows from choosing some a > 1 and applying union bound.
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SM7.1.4 Bounding (SM7.4). We consider bounding the first term (SM7.4) now:

(SM7.4) ≤
∑
j∈Jk

P

[
n∏
i=1

fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)
≥ e−nat2C∗(γ2n+µn,kλn)

]
(Union bound)

≤
∑
j∈Jk

E

[
n∏
i=1

√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

]
enat

2C∗(γ2n+µn,kλn)/2

(Take square root of both sides, then apply Markov’s inequality)

=
∑
j∈Jk

enat
2C∗(γ2n+µn,kλn)/2

n∏
i=1

E

[√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Zi)

]
(SM7.6)

where the last step (SM7.6) is by independence over i. Note that

E

[√
fHk,j ,νi(Zi) + 2v(Zi)

fG0,νi(Yi)

]
=

∫ ∞

−∞

√
fHk,j ,νi(x) + 2v(x)

√
fG0,νi(x) dx

≤ 1− h2(fHk,j ,νi , fG0,νi) +

∫ ∞

−∞

√
2v(x)fG0,νi(x) dx

(
√
a+ b ≤

√
a+
√
b)

≤ 1− h2(fHk,j ,νi , fG0,νi) +

(
2

∫ ∞

−∞
v(x) dx

)1/2

(Jensen’s inequality)

= 1− h2(fHk,j ,νi , fG0,νi) +
√
8Mη (Direct integration)

Also note that, for ti > 0, we have∏
i

ti = exp
∑
i

log ti ≤ exp

(∑
i

(ti − 1)

)
.

and thus
n∏
i=1

E

[√
fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)

]
≤ exp

[
−nh2(fHk,j ,·, fG0,·) + n

√
8Mω

]
.

Thus, we can further bound (SM7.6):

(SM7.4) ≤ (SM7.6) =
∑
j∈Jk

enαt
2(γ2n+µn,kλn)/2

n∏
i=1

E

[√
fHk,j ,νi + 2v(Zi)

fG0,νi(Zi)

]

≤
∑
j∈Jk

exp

{
nat2C∗

2
(γ2n + µn,kλn)− nh

2
(fHk,j ,·, fG0,·) + n

√
8Mω

}

≤
∑
j∈Jk

exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω

}
(h

2
(fHk,j ,·, fG0,·) ≥ tµn,k+1 by (SM7.3))

≤ exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω + logN

}
(|Jk| ≤ N )
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≤ exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 + n

√
8Mω + C| logω|2max

(
M√
| logω|

, 1

)}
(Proposition SM6.1, q = 0)

= exp

{
nat2C∗

2
(γ2n + µn,kλn)− nt2µ2n,k+1 +

√
8M + C(log n)2max

(
M√
log n

, 1

)}
.

(Recall that ω = 1
n2 )

SM7.1.5 Bounding (SM7.5). We now consider bounding the second term (SM7.5). By Markov’s inequality
again (taking x 7→ x1/(2 logn) on both sides, we can choose to bound

(SM7.5) ≤ E

[
n∏
i=1

(
1

(2πν2i )
1/4

Zi
M
√
ω

) 1
logn

1(|Zi|>M)
]
exp

(
−
n(a− 1)t2C∗(γ2n + µn,kλn)

2 log n

)
instead. Define

ai =
1

(2πν2i )
1/4M

√
ω
≤ Cνℓn

M
λ =

1

log n

Apply Lemma SM7.1 to obtain the following. Note that to do so, we requireM ≥ νu
√
8 log n and p ≥ 1

logn .

Then,

logE

[
n∏
i=1

(
1

(2πν2i )
1/4

Zi
M
√
ω

) 1
logn

1(|Zi|>M)
]
= logE

[∏
i

(aiZi)
λ1(|Zi|≥M)

]

≲νu

n∑
i=1

(aiM)λ
(

1

Mn
+

2pµpp(G0)

Mp

)
(Lemma SM7.1)

≤
n∑
i=1

(Cνℓn)
1

logn

(
1

Mn
+

2pµpp(G0)

Mp

)
≲νu,νℓ

1

M
+

2pnµpp(G0)

Mp

As a result,

log[(SM7.5)] ≤ Cνu,νℓ
(

1

M
+

2pnµpp(G0)

Mp

)
− n(a− 1)

2 log n
t2C∗

(
γ2n +Bλ2(1−2−k)

n

)
. (SM7.7)

To conclude, note that by Assumption 2 µpp(G0) ≤ Ap0p
p/α. Let M = 2eA0(cm log n)1/α and p =

(M/(2eA0))
1/α so that

2pµpp(G0)/M
p ≤ exp (−cm log n)

We choose cm ≥ 2 sufficiently large such that M = 2eA0(cm log n)1/α > νu
√
8 log n∨ 1 and p ≥ 1 for all

n > 2 to ensure that our application of Lemma SM7.1 is correct. We also choose a = 1.5.
Plugging in these choices, we can verify that, via (SM7.1),

log[(SM7.5)] ≤ t2
[
2Cνu,νℓ −

C∗BCλ
4

(log n)

]
log[(SM7.4)] ≤ −t2(log n)1+

2+α
2α

[
Cλ

(
−3

4
C∗ − 3

4
C∗B +B2

)
− C

]
There exists a sufficiently large choice of B such that log[(SM7.5)] ≤ −t2 log n and log[(SM7.4)] ≤
−t2 log n− log 2. Thus, we obtain that (SM7.4) + (SM7.5) ≤ n−t2 . This concludes the proof.
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SM7.2 Auxiliary lemmas.

Lemma SM7.1 (Lemma 5 in Jiang (2020)). Suppose Zi | τi ∼ N (τi, ν
2
i ) where τi | ν2i ∼ G0 inde-

pendently across i. Let 0 < νu, νℓ < ∞ be the upper and lower bounds for νi. Then, for all constants
M > 0, λ > 0, ai > 0, p ∈ N such that M ≥ νu

√
8 log n, λ ∈ (0, p ∧ 1), and a1, . . . , an > 0:

E

{∏
i

|aiZi|λ1(|Zi|≥M)

}
≤ exp

{
n∑
i=1

(aiM)λ
(

4νu

Mn
√
2π

+

(
2µp(G0)

M

)p)}
.
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Part 4 Additional theoretical results

Appendix SM8. Estimating η0 by local linear regression

In this section, we verify that estimating η0 by local linear regression satisfies the conditions we require
for the nuisance estimators, when the true nuisance parameters belong to a Hölder class of order p = 2:
m0(σ), s0(σ) ∈ C2

A1
([σℓ, σu]).

In our empirical application, we estimate m0, s0 by nonparametrically regressing Yi on xi ≡ log10(σi).
57

Since log(·) is a smooth transformation on strictly positive compact sets, Hölder smoothness conditions
for (m0, s0) translate to the same conditions on (E[Y | x],Var(Y | x) − σ2(x)), with potentially dif-
ferent constants. Moreover, scaling and translating xi linearly do not affect our technical results. As a
result, we assume, without essential loss of generality, xi ∈ [0, 1]. We abuse and recycle notation to write
m0(x) = E[Yi | xi = x], s0(x) = Var(θi | xi = x). We also note that m0(x), s0(x) ∈ C2

A3
([0, 1]) for some

A3 ≲H A1.
We will consider the following local linear regression of Yi on xi. There are many steps imposed for ease

of theoretical analysis, but we conjecture are unnecessary in practice. In our empirical exercises, omitting
these steps do not affect performance.

(LLR-1) Fix some kernel K(·). Use the direct plug-in procedure of Calonico et al. (2019) to estimate a
bandwidth ĥn,m.

(LLR-2) For some Ch > 1, project ĥn,m to some interval [C−1
h n−1/5, Chn

−1/5] so as to enforce that it
converges at the optimal rate:58

ĥn,m ← (ĥn,m ∨ C−1
h n−1/5) ∧ Chn−1/5.

(LLR-3) Using ĥn,m, estimate m0 with the local linear regression estimator m̂raw under kernel K(·) and
bandwidth ĥn,m.

(LLR-4) Project the resulting estimator m̂ to the Hölder class C2
A3

([0, 1]):

m̂ ∈ argmin
m∈C2

A3
([0,1])

∥m− m̂raw∥∞.

We obtain m̂ through this procedure.
(LLR-5) Form estimated squared residuals R̂2

i = (Yi − m̂(xi))
2.

(LLR-6) Repeat (LLR-1) on data (R̂2
i , xi) to obtain a bandwidth ĥn,s.

(LLR-7) Repeat (LLR-2) to project ĥn,s.
(LLR-8) Using ĥn,s, estimate v(x) = E[R2

i | X = x] with the local linear regression estimator v̂ under
kernel K(·).

(LLR-9) Since v̂ is a local linear regression estimator, it can be written as a linear smoother v̂(x) =
∑n

i=1 ℓi(x; ĥn,s)R̂
2
i .

Let an estimate of the effective sample size be

pn =
1

n

n∑
i=1

1∑n
j=1 ℓ

2
i (xj , ĥn,s)

. (SM8.1)

57Correspondingly, let σ(x) = 10x.
58We use the← notation to reassign a variable so that we can reduce notation clutter.
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(LLR-10) Truncate the estimated conditional standard deviation:

ŝraw(x) =
√
v̂(x)− σ2(x) ∨

√
2

pn + 2
v̂(x). (SM8.2)

(LLR-11) Finally, project the resulting estimate to the Hölder class as in (LLR-4):

ŝ(x) ∈ argmin
s∈C2

A3
([0,1])

s2(·)≥ 2
pn+2

mini σ
2
i

∥s− ŝraw∥∞.

In practice, we expect the projection steps (LLR-3), (LLR-4), (LLR-7), and (LLR-11) to be unnecessary,
at least with exceedingly high probability, since (i) Calonico et al. (2019)’s procedure is consistent for the
optimal bandwidth, which contracts at n−1/5, and (ii) local linear regression estimated functions are likely
sufficiently smooth to obey Assumption 4(3). Hence, in our empirical implementation, we do not enforce
these steps and simply set m̂ = m̂raw, ŝ = ŝraw. Omitting the projection steps does not appear to affect
performance.

To ensure we always have a positive estimate of s0, we truncate at a particular point (SM8.2). This trun-
cation rule is a heuristic (and improper) application of results from the literature on estimating non-centrality
parameters. We digress and discuss the truncation rule in the next remark.

Remark SM8.1 (The truncation rule in (SM8.2)). The truncation rule in (SM8.2) is an ad hoc adjustment
without affecting asymptotic performance.59 It is based on a literature on the estimation of non-central χ2

parameters (Kubokawa et al., 1993). Specifically, let Ui
i.i.d.∼ N (λi, 1) and let V =

∑p
i=1 U

2
i be a noncentral

χ2 random variable with p degrees of freedom and noncentrality parameter λ =
∑p

i=1 λ
2
i . The UMVUE

for λ is V − p, which is dominated by its positive part (V − p)+. Kubokawa et al. (1993) derive a class of
estimators of the form V − ϕ(V ; p) that dominate (V − p)+ in squared error risk. An estimator in this class
is (V − p) ∨ 2

p+2V .60

This setting is loosely connected to ours. Suppose m0 is known, and we were using a Nadaraya–Watson
estimator with uniform kernel. Then, for a given evaluation point x0, we would be averaging nearby R2

i ’s.
Each Ri is conditionally Gaussian, Ri | (θi, σi) ∼ N (θi −m0(σi), σ

2
i ) with approximately equal variance

σ2i ≈ σ(x0)
2. If there happens to be p0 R2

i ’s that we are averaging, the Nadaraya–Watson estimator is of
the form

v̂(x0) =
σ(x0)

2

p0

p∑
i=1

(
Ri

σ(x0)

)2

59Indeed, since we already assumed that the true conditional variance s0(x) > sℓ, we can truncate by any vanishing
sequence. Given any vanishing sequence, eventually it is lower than sℓ, and eventually |ŝ− s0| is small enough for the
truncation to not bind. This is, in some sense, silly, since finite sample performance is likely affected if we truncate
by, say, 1

log logn , reflected in a large constant in the corresponding rate expression. Our following argument assumes
that the truncation of order O(n−4/5). Doing so is likely to achieve a smaller constant in the rate expression, despite
not mattering asymptotically.
60Though, since neither (V − p)+ and (V − p) ∨ 2

p+2V is differentiable in V , they are not admissible.
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Conditional on σ2i , θi, the quantity
∑p

i=1

(
Ri

σ(x0)

)2
is (approximately) noncentral χ2 with p degrees of free-

dom and noncentrality parameter

λ =

p0∑
i=1

(
θi −m0(xi)

σ(x0)

)2

Therefore, correspondingly, applying the truncation rule from Kubokawa et al. (1993), an estimator for the
sample variance of θi, 1

p0

∑p0
i=1(θi −m0(xi))

2, is(
v̂(x0)− σ2(x0)

)
∨ 2

p0 + 2
v̂(x0).

Here, we apply this truncation rule (improperly) to the case where v̂(x0) is a weighted average of the
squared residuals, with potentially negative weights due to higher-order polynomials (equiv. higher-order
kernels). To do so, we would need to plug in an analogue of p0. We note that when independent random
variables Vi have unit variance, the weighted average has variance equal to the squared length of the weights

Var

(∑
i

ℓi(x)Vi

)
=

n∑
i=1

ℓ2i (x).

Since a simple average has variance equal to 1/n, we can take
(∑n

i=1 ℓ
2
i (x)

)−1 to be an effective sample
size. Our rule simply takes the average effective sample size over evaluation points in (SM8.1) and use it as
a candidate for p. ■

The goal in this section is to control the following probability as a function of t > 0

P
(
∥η̂ − η0∥∞ > CHtn

−2/5(log n)β
)

for some constants β,CH to be chosen. Since we treat x1, . . . , xn as fixed (fixed design), we shall do so
placing some assumptions on sequences of the design points x1:n as a function of n. These assumptions are
mild and satisfied when the design points are equally spaced. They are also satisfied with high probability
when the design points are drawn from a well-behaved density f(·).

Before doing so, we introduce some notation on the local linear regression estimator. Note that, by
translating and scaling if necessary, it is without essential loss of generality to assume xi take values
in [0, 1]. Let hn denote some (possibly data-driven) choice of bandwidth. Let u(x) = [1, x]′ and let

Bnx = Bnx(hn) = 1
nhn

∑n
i=1K

(
xi−x
hn

)
u
(
xi−x
hn

)
u
(
xi−x
hn

)′
. Then, it is easy to see that the local lin-

ear regression weights can be written in terms of Bnx and u(·):

sn ≡ nhn ℓi(x) = ℓi(x, hn) ≡
1

sn
u(0)′B−1

nx u

(
xi − x
hn

)
K

(
xi − x
hn

)
.

We shall maintain the following assumptions on the design points. The following assumptions introduce
constants (Ch, n0, λ0, a0,K0,K(·), c, C, CK , VK) which we shall take as primitives like those in H. The
symbols ≲,≳,≍ are relative to these constants, and we will not keep track of exact dependencies through
subscripts.

Assumption SM8.1. For some constant Ch > 1, the data-driven bandwidth hn is almost surely contained
in the set Hn ≡ [C−1

h n−1/5 ∨ 1
2n , Chn

−1/5].

Assumption SM8.1 is automatically satisfied by the projection steps (LLR-3) and (LLR-7).
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Assumption SM8.2. The sequence of design points (xi : i = 1, . . . , n) satisfy:

(1) There exists a real number λ0 > 0 and integer n0 > 0 such that, for all n ≥ n0, any x ∈ [0, 1], and
any h̃ ∈ [C−1

h n−1/5 ∨ 1
2n , Chn

−1/5], the smallest eigenvalue λmin(Bnx(h̃)) ≥ λ0.
(2) There exists a real number a0 > 0 such that for any interval I ⊂ [0, 1] and all n ≥ 1,

1

n

n∑
i=1

1(xi ∈ I) ≤ a0
(
λ(I) ∨ 1

n

)
where λ(I) is the Lebesgue measure of I .

(3) The kernel K is supported on [−1, 1] and uniformly bounded by some positive constant K0.
(4) There exists c, C > 0 such that for all n ≥ n0, the choice of pn in (SM8.1) satisfies cn4/5 ≤

pn(h̃) ≤ Cn4/5 for all h̃ ∈ [C−1
h n−1/5 ∨ 1

2n , Chn
−1/5].

Assumption SM8.2(1–3) is nearly the same as Assumption (LP) in Tsybakov (2008). The only differ-
ence is that Assumption SM8.2(1) requires the lower bound λ0 to hold uniformly over a range of bandwidth
choices, relative to LP-1 in Tsybakov (2008), which requires λ0 to hold for some deterministic sequence hn.
This is a mild strengthening of LP-1: Note that if xi are drawn from a Lipschitz-continuous, everywhere-
positive density f(x), then for h→ 0, nh→∞,

Bnx(h) ≈
∫
K(t)u(t)u(t)′f(x) dt ⪰

∫
K(t)u(t)u(t)′ dt

(
min
x∈[0,1]

f(x)

)
where ≻ denotes the positive-definite matrix order. Thus the minimum eigenvalue of Bnx(h) should be
positive irrespective of x and h. See, also, Lemma 1.5 in Tsybakov (2008).

Assumption SM8.2(2)–(3) are the same as (LP-2)–(LP-3) in Tsybakov (2008). (2) expects that the design
points are sufficiently spread out, and (3) is satisfied by, say, the Epanechnikov kernel.

Lastly, (4) expects that the average effective sample size is about sn = nhn ≍ n−4/5.Again, heuristically,
if xi are drawn from a Lipschitz and everywhere-positive density f(x), then

n∑
i=1

ℓ2i (xj) ≈ n
1

s2n
hn ·

∫
(u(0)′B−1

n,xju(t)K(t))2f(xj) dt =
1

sn

∫
(u(0)′B−1

n,xju(t)K(t))2f(xj) dt.

Hence the mean reciprocal pn is of order sn. We also remark that Assumption SM8.2 is satisfied by regular
design points xi = i/n.

Assumption SM8.3. The kernel satisfies the following VC subgraph-type conditions. Let

Fk =

{
y 7→

(
y − x
h

)k−1

K

(
y − x
h

)
: x ∈ [0, 1], h ∈ Hn

}
for k = 1, 2. For any finitely supported measure Q,

N(ϵ,Fk, L2(Q)) ≤ CK(1/ϵ)VK

for CK , VK that do not depend on Q.

Assumption SM8.3 is satisfied for a wide range of kernels, e.g. the Epanechnikov kernel. By Lemma
7.22 in Sen (2018), reproduced as Lemma SM8.2 below, so long as the function t 7→ tk−1K(t) is bounded
(assumed in Assumption SM8.2(3)) and of bounded variation (satisfied by any absolutely continuous kernel
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function), the covering number conditions hold by exploiting the finite VC dimension of subgraphs of these
functions.

We now state and prove the main results in this section. The key to these arguments is Proposition SM8.1
on the bias and variance of local linear regression estimators. Proposition SM8.1 is uniform in both the
evaluation point x and the bandwidth h, as long as the latter converges at the optimal rate.

Theorem SM8.1. Suppose the conditional distribution θi | σi and the design points σ1:n satisfy Assump-
tions 2, 3, and SM8.2. Moreover, suppose m0, s0 satisfies Assumption 4(1) with p = 2. Suppose the kernel
K(·) satisfies Assumption SM8.3. Let m̂, ŝ denote the estimators computed by (LLR-1) through (LLR-11).
Then:

(1) P
(
m̂, ŝ ∈ C2

A3
([0, 1])

)
= 1

(2) For some C depending only on the parameters in the assumptions, for all n ≥ 7 and t > 1,

P
(
max (∥m̂−m0∥∞, ∥ŝ− s0∥) ≥ Ctn−

2
5 (log n)1+2/α

)
≤ 1

n10t2
. (SM8.3)

(3) For some c depending only on the parameters in the assumptions, for all n ≥ 7,

P
( c
n
≤ ŝ
)
= 1.

Proof. The first claim is true automatically by the projection to the Hölder space. The third claim is true
automatically by (LLR-11), since pn ≍ n4/5 and n−4/5 ≳ n−1.

Now, we show the second claim. Since we assume that m0, s0 lies in the Hölder space with s0 > s0ℓ,
then projection to the Hölder space (and truncation by 2/(2+pn)mini σ

2
i ) worsens performance by at most

a factor of two for all sufficiently large n. The projection to the Hölder space ensures that ∥η̂ − η0∥∞ is
bounded a.s. for all n, so that we can remove “for all sufficiently large n” at the cost of enlarging a constant
so as to accommodate the first finitely many values of n. As a result, it suffices to show that

P
(
max (∥m̂raw −m0∥∞, ∥ŝraw − s0∥∞) > Ctn−2/5(log n)β

)
≤ 1

n10t2

for some C and β = 1 + 2/α.
Let Yi = m0(xi) + ξi where ξi = θi −m0(xi) + (Yi − θi). Note that we have simultaneous moment

control for ξi:
max
i

E[|ξi|p]1/p ≲ p1/α

where α is the constant in Assumption 2. Therefore, we can apply Proposition SM8.1 to obtain

P
(
∥m̂raw −m0∥∞ > Ctn−2/5(log n)1+1/α

)
≤ 1

2n10t2

for the local linear regression estimator m̂raw.
The same argument to control ∥ŝraw − s0∥∞ is more involved. First observe that

|ŝ2raw − s20| = |ŝraw − s0|(ŝraw + s0) ≥ s0ℓ|ŝraw − s0|.

Also observe that for a positive f0,

|f̂ ∨ g − f0| ≤ |f̂ − f0| ∨ |g|.
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As a result, it suffices to control the upper bound in

∥ŝraw − s0∥∞ ≤
1

s0ℓ

(
∥v̂ − v0∥∞ ∨

(
2

2 + pn
v̂

))
(v0(x) ≡ Var(Yi | xi = x))

≲ ∥v̂ − v0∥∞ ∨
∥v̂ − v0∥∞ + ∥v0∥∞

2 + n4/5
(Assumption SM8.2)

≲ ∥v̂ − v0∥∞ (SM8.4)

Now, observe that R̂2
i = R2

i + (m0 − m̂)2 − 2(m0 − m̂)ξi. Hence,

|v̂(x)− v0(x)| ≤

∣∣∣∣∣
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∣∣∣∣∣+
{
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)} n∑

i=1

|ℓi(x, ĥn,s)|

≤

∣∣∣∣∣
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∣∣∣∣∣+ C

{
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)}

.

(SM8.5)

By Lemma 1.3 in Tsybakov (2008), the term
∑n

i=1 |ℓi(x, ĥn,s)| is bounded uniformly in h and x by a
constant. Note that

ξ̃i ≡ R2
i − v0(xi)

has simultaneous moment control with a different parameter (α̃ = α/2):

max
i

(E|ξ̃i|p)1/p ≲ p2/α.

Thus, applying Proposition SM8.1 and taking care to plug in ξ̃, α̃, we can bound the first term in (SM8.5)

P

(∥∥∥∥∥
n∑
i=1

ℓi(x, ĥn,s)R
2
i − v0(x)

∥∥∥∥∥
∞

≥ Ctn−2/5(log n)1+2/α

)
≤ 1

4n10t2
.

Note that by an application of Lemma OA3.7, for any a, b > 0, we have that

P

(
max
i
|ξi| > C(a, b)t(log n)1/α

)
< an−be−t

2

As a result, the second term in (SM8.5) admits

P

(
∥m0 − m̂∥2∞ + 2∥m0 − m̂∥∞

(
max
i∈[n]
|ξi|
)
> Ctn−2/5(log n)1+2/α

)
≤ 1

4n10t2

Finally, putting these bounds together, we have that

P
(
∥v̂ − v0∥∞ > Ctn−2/5(log n)1+2/α

)
≤ 1

2n10t2
,

where the same bound (with a different constant) holds for ŝraw by (SM8.4).
Combining the bounds for m̂ and ŝ, we obtain (SM8.3). This concludes the proof. □

Theorem SM8.2. Under the assumptions of Theorem SM8.1, let η̂ = (m̂, ŝ) denote estimators computed
by (LLR-1) through (LLR-11). Then,

E
[
MSERegretn(Ĝn, η̂)

]
≲ n−2/5(log n)1+2/α.
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Proof. Recall the event An in (A.1) for ∆n = C1n
−2/5(log n)β and Mn = C2(log n)

1/α, where C1, C2 are
to be chosen and β = 1 + 2/α. Define Ãn = An ∩ {s0ℓ/2 ≤ ŝ ≤ 2s0u}. Decompose

E
[
MSERegretn(Ĝn, η̂)

]
= E

[
MSERegretn(Ĝn, η̂)1(Ãn)

]
+ E

[
MSERegretn(Ĝn, η̂)1(Ã

C
n )
]
.

Note that, for all sufficiently large n > N , such that N depends only on C1, β, sℓ, su, the event An im-
plies {s0ℓ/2 ≤ ŝ ≤ 2s0u} and henceAn = Ãn. Thus, by Theorem SM8.1, for all sufficiently large n, on the
event An, statements analogous to Assumption 4(2–4) hold for the estimator η̂. As a result, we may apply
Theorem A.1, mutatis mutandis, to obtain that

E
[
MSERegretn(Ĝn, η̂)1(Ãn)

]
≲ n−4/5(log n)

2+α
α

+3+2β

for all sufficiently large choices of C1, C2.
To control E

[
MSERegretn(Ĝn, η̂)1(Ã

C
n )
]
, we observe that under Lemma OA3.6 and Theorem SM8.1(1

and 3), we have that almost surely,

MSERegretn(Ĝn, η̂) ≲ n4Z
2
n.

Hence, by Cauchy–Schwarz as in Lemma OA3.2,

E
[
MSERegretn(Ĝn, η̂)1(Ã

C
n )
]
≲ P(ÃC

n )
1/2n4(log n)2/α,

where we apply Lemma OA3.7 to bound E[Z4
n].

For all sufficiently large n > N ,

P(AC
n ) = P(ÃC

n ) ≤ P(Zn > Mn) + P(∥η̂ − η0∥∞ > ∆n).

Sufficiently large C1, C2 can be chosen such that the right-hand side is bounded by n−10. To wit, we can
apply Theorem SM8.1 to bound ∥η̂ − η0∥∞. We can apply Lemma OA3.7 to bound P(Zn > Mn).

As a result, we would obtain

E
[
MSERegretn(Ĝn, η̂)1(Ã

C
n )
]
≲

1

n
(log n)2/α

for all sufficiently large n.
Since E[MSERegretn(Ĝn, η̂)] ≲ n4(log n)2/α is finite for all n, at the cost of enlarging the implicit

constant, we have the result of the theorem holding for all n. □

SM8.1 Auxiliary lemmas.

Proposition SM8.1. Consider the local linear regression of data Yi = f0(xi) + ξi on the design points xi,
for i = 1, . . . , n. Suppose f0 belongs to a Hölder class of order two: f0 ∈ C2

L([0, 1]) for some L > 0. Sup-
pose that the design points satisfy Assumption SM8.2 and the (possibly data-driven) bandwidths hn satisfy
Assumption SM8.1. Assume the kernel additionally satisfies Assumption SM8.3.

Assume that the residuals ξi are mean zero, and there exists a constant Aξ > 0, α > 0 such that

max
i=1,...,n

(E[|ξi|p])1/p ≤ Aξp1/α
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for all p ≥ 2. Let ℓi(x, h) be the weights corresponding to local linear regression, and define the bias part
b(x, hn) = (

∑n
i=1 ℓi(x, hn)f0(xi))− f0(xi) and the stochastic part v(x, h) =

∑n
i=1 ℓi(x, h)ξi. Recall that

Hn is the interval for hn in Assumption SM8.1. Then:

(1) The bias term is of order n−2/5:

sup
x∈[0,1],h∈Hn

|b(x, h)| ≲ n−2/5.

(2) The variance term admits the following large-deviation inequality: For any a, b > 0, there exists a
constant C(a, b), which may additionally depend on the constants in the assumptions, such that for
all n > 1 and t ≥ 1

P

(
sup

x∈[0,1],h∈Hn
|v(x, h)| > C(a, b) · t · (log n)1+1/αn−2/5

)
≤ an−b 1

t2
.

(3) As a result, let f̂(·) = b(·, hn) + v(·, hn) + f0(·), we have that for any a, b > 0, there exists a
constant C(a, b) such that for all n > 1 and t ≥ 1,

P
(
∥f̂ − f0∥∞ > C(a, b)t(log n)1+1/αn−2/5

)
≤ an−b 1

t2
.

Proof. Note that (3) follows immediately from (1) and (2) since the bounds in (1) and (2) are uniform over
all h ∈ Hn. We now verify (1) and (2).

(1) This claim follows immediately from the bound for b(x0) in Proposition 1.13 in Tsybakov (2008).
The argument in Tsybakov (2008) shows that

sup
x∈[0,1]

|b(x, hn)| ≤ Ch2n,

which is uniformly bounded by Cn−2/5 by Assumption SM8.1. Hence

sup
x∈[0,1],h∈Hn

|b(x, h)| ≲ n−2/5.

(2) Let M be a truncation point to be defined. Let

ξi,<M = ξi1(|ξi| ≤M)− E[ξi1(|ξi| ≤M)] ξi,>M = ξi1(|ξi| > M)− E[ξi1(|ξi| > M)]

be truncated and demeaned variables. Note that

ξi = ξi,<M + ξi,>M .

First, let V1n(x, hn) =
∑n

i=1 ℓi(x, hn)ξi,>M . Note that by Cauchy–Schwarz, uniformly over x, hn,

V 2
1n ≤

n∑
i=1

ℓi(x, hn)
2

n∑
i=1

ξ2i,>M

≲
1

h2n

1

n

n∑
i=1

ξ2i,>M (Lemma 1.3(i) in Tsybakov (2008) shows that |ℓi(x, hn)| ≤ C
nhn

)

≲ n2/5
1

n

n∑
i=1

ξ2i,>M

116



Now, for some C related to the implicit constant in the above display,

P

(
sup

x∈[0,1],hn∈Hn
V 2
1n(x, hn) > Ct2

)
≤ P

(
1

n

n∑
i=1

ξ2i,>M > t2n−2/5

)
≤

maxi Eξ2i,>M
t2

n2/5.

(Markov’s inequality)
We note that by Cauchy–Schwarz,

E[ξ2i,>M ] ≤
√
E[ξ4i ]

√
P(|ξi| > M) ≲

√
P(|ξi| > M) ≤ exp (−cMα) (Lemma SM6.15)

where c depends on Aξ. Hence, for a potentially different constant C,

P

(
sup

x∈[0,1],hn∈Hn
|V1n(x, hn)| > Ct

)
≤ exp

(
−cMα − 2 log t+

2

5
log n

)
. (SM8.6)

Next, consider the process

V2n(x, hn) =
n∑
i=1

ℓi(x, hn)ξi,<M

=
1

nhn

n∑
i=1

u(0)′B−1
nx

[
1

0

]
︸ ︷︷ ︸

A1(x,hn)

K

(
xi − x
hn

)
ξi,<M

+
1

nhn

n∑
i=1

u(0)′B−1
nx

[
0

1

]
︸ ︷︷ ︸

A2(x,hn)

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M

≡ A1(x, hn)

hn

1

n

n∑
i=1

K

(
xi − x
hn

)
ξi,<M +

A2(x, hn)

hn

1

n

n∑
i=1

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M .

Note that, by Assumption SM8.2(1), uniformly over x ∈ [0, 1] and hn ∈ Hn,

|Ak(x, hn)| ≤ ∥u(0)′B−1
nx ∥ ≤

1

λ0
.

By triangle inequality,

V2n(x, hn) ≲
1

hn

∣∣∣∣∣ 1n
n∑
i=1

K

(
xi − x
hn

)
ξi,<M

∣∣∣∣∣+ 1

hn

∣∣∣∣∣ 1n
n∑
i=1

K

(
xi − x
hn

)(
xi − x
hn

)
ξi,<M

∣∣∣∣∣
≡ 1√

nhn
V2n,1(x, hn) +

1√
nhn

V2n,2(x, hn).

We will aim to control the ψ2-norm of the left-hand side. Note that it suffices to control the ψ2-norm of both
terms on the right-hand side:∥∥∥∥∥ sup

x∈[0,1],hn∈Hn
|V2n(x, hn)|

∥∥∥∥∥
ψ2

≲
1√
nhn

max
k=1,2

∥∥∥∥∥ sup
x∈[0,1],hn∈Hn

|V2n,k(x, hn)|

∥∥∥∥∥
ψ2

 .

The above display follows from replacing the sum with two times the maximum and Lemma 2.2.2 in van
der Vaart and Wellner (1996).
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We will do so by applying Lemma SM8.1. The analogue of f in Lemma SM8.1 is

t 7→ f(t;x, h) =

(
t− x
h

)k−1

K

(
t− x
h

)
for V2n,k, k = 1, 2. Naturally, the analogues of F is

Fk = {t 7→ f(t;x, h) : x ∈ [0, 1], h ∈ Hn} ∪ {t 7→ 0}.

Note that
f(t;x, h) ≤ 1(|t− x| ≤ h)K0

and thus the diameter of Fk is at most

sup
A⊂[0,1]:λ(A)≤4Chn−1/5

K0

√√√√ 1

n

n∑
i=1

1(xi ∈ A) ≲ n−1/10

by Assumption SM8.2(2). Therefore, by Assumption SM8.3, we apply Lemma SM8.1 and obtain that for
k = 1, 2 ∥∥∥∥∥ sup

x∈[0,1],h∈Hn
|V2n,k(x, h)|

∥∥∥∥∥
ψ2

≲Mn−1/10
√
log n.

Finally, this argument shows that∥∥∥∥∥ sup
x∈[0,1],h∈Hn

|V2n(x, h)|

∥∥∥∥∥
ψ2

≲
1

√
nhnn1/10

M
√
log n ≲ n−2/5M

√
log n. (SM8.7)

Putting things together, we can choose M = (cm log n)1/α for sufficiently large cm so that by (SM8.6),

P

(
sup

x∈[0,1],h∈Hn
|V1n(x, h)| > Ctn−2/5

)
≤ a

2
n−b

1

t2
,

where cm depends on a, b. The bound (SM8.7) in turns shows that

P

(
sup

x∈[0,1],hn∈Hn
|V2n(x, hn)| > C(a, b)t(log n)

2+α
2α n−2/5

)
≤ 2e−t

2

Taking t =
√
b log n+ log(a/4)s gives

P

(
sup

x∈[0,1],hn∈Hn
|V2n(x, hn)| > C(a, b)s(log n)1+1/αn−2/5e−s

2

)
≤ a

2
n−be−s

2
<
a

2
n−b

1

s2

for all s > 1.
Therefore, combining the two bounds,

P

(
sup

x∈[0,1],hn∈Hn
|v(x, hx)| > C(a, b)t(log n)1+1/αn−2/5

)
≤ an−b 1

t2
.

□
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Lemma SM8.1. Suppose ξi are bounded by M ≥ 1 and mean zero. Consider the process

Vn(f) =
1√
n

n∑
i=1

f(xi)ξi

over a class of real-valued functions f ∈ F and evaluation points x1, . . . , xn ∈ [0, 1]. Define the seminorm
∥·∥n relative to x1, . . . , xn by

∥f∥n =

√√√√ 1

n

n∑
i=1

f(xi)2.

Suppose 0 ∈ F and F has polynomial covering numbers:

N(ϵ,F , ∥·∥n) ≤ C(1/ϵ)V ϵ ∈ [0, 1]

where C, V > 0 depend solely on F . Then∥∥∥∥∥supf∈F
|Vn(f)|

∥∥∥∥∥
ψ2

≲Mdiam(F)
√
log(1/diam(F)),

where diam(F) = supf1,f2∈F∥f1 − f2∥n.

Proof. The process Vn(f) has subgaussian increments with respect to ∥·∥n:

∥Vn(f1)− Vn(f2)∥ψ2 ≲M∥f1 − f2∥n.

Hence, by Dudley’s chaining argument (e.g. Corollary 2.2.5 in van der Vaart and Wellner (1996)), for some
fixed f0 ∈ F , ∥∥∥∥∥supf Vn(f)

∥∥∥∥∥
ψ2

≤ ∥Vn(f0)∥ψ2 + CM

∫ diam(F)

0

√
logN(δ,F , ∥·∥n) dδ.

Note that (i) the metric entropy integral is bounded by Cdiam(F)
√
log(1/diam(F)), and (ii) for a fixed

f0, ∥Vn(f0)∥ψ2 ≲ ∥f0∥nM ≤ diam(F)M since 0 ∈ F . Therefore,∥∥∥∥∥supf Vn(f)

∥∥∥∥∥
ψ2

≲Mdiam(F)
√
log(1/diam(F)).

□

Lemma SM8.2 (Lemma 7.22(ii) in Sen (2018)). Let q(·) be a real-valued function of bounded variation on
R. The covering number of F = {x 7→ q(ax+ b) : (a, b) ∈ R} satisfies

N(ϵ,F , L2(Q)) ≤ K1ϵ
−V1

for some K1 and V1 and for a constant envelope.

Appendix SM9. Minimax lower bound for nonparametric regression

Lemma SM9.1. Under the setup of Theorem 2, suppose Yi ∼ N (m0(σi), s
2
0 + σ2i ), then

inf
m̂

sup
m0

E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
≳H n−2p/(2p+1),
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where the infimum is over all estimators of m0 from (Yi, σi)
n
i=1 and the supremum is over all Hölder con-

tinuous m0(·).

Proof. First, note that learning m0 from (Yi, σi) is a nonparametric regression problem with heteroskedas-
tic variances. This problem is more difficult than a corresponding problem with homoskedastic variances
σ2ℓ + s20. Since we may represent

Yi = θi + σℓWi + (σ2i − σℓ)1/2Ui

for independent Gaussians Wi, Ui ∼ N (0, 1). Let Vi = θi + σℓWi. Note that we can do no worse for es-
timating m0 with (Vi, σi) than with (Yi, σi), and estimating m0 from (Vi, σi) is a homoskedastic regression
problem, where Vi ∼ N (m0(σi), σ

2
ℓ + s20). It remains to show that the minimax rate for estimating m0 on

the grid points σ1:n from (Vi, σi) is n−2p/(2p+1).
Since we simply have a nonparametric regression problem, we may translate and rescale so that the de-

sign points σ1:n are equally spaced in [0, 1] and the variance of Vi is 1—potentially changing the constantA1

for the Hölder smoothness condition. Corollary 2.3 in Tsybakov (2008) shows a lower bound for integrated
MSE:

inf
m̃

sup
m0

E
[∫ 1

0
(m̃(x)−m0(x))

2 dx

]
≳H n

− 2p
2p+1

where the infimum is over all (randomized) estimators using (Vi, σi). It thus suffices to connect the MSE
objective over σ1, . . . , σn to the integrated MSE.

Lastly, we connect the squared loss on the design points to the L2 loss of estimating m0(·) with ho-
moskedastic data Vi ∼ N (m0(σi), σ

2
ℓ + s20). Since we are simply confronted with a nonparametric regres-

sion problem, note that we may translate and rescale so that the design points σ1:n are equally spaced in [0, 1]

and the variance of Vi is 1—potentially changing the constant A1 for the Hölder smoothness condition. The
remaining task is to connect the average ℓ2 loss on a set of equally spaced grid points to the L2 loss over the
interval.

Observe that for any m̂(σ1), . . . , m̂(σn), there is a function m̃ : [0, 1]→ R such that its average value on
[1 + (i− 1)/n, 1 + i/n] is m̂(σi):

n

∫
[1+(i−1)/n,1+i/n]

m̃(σ) dσ = m̂(σi).

Now, note that∫ 1

0
(m̃(x)−m0(x))

2 dx =
n∑
i=1

∫
[(i−1)/n,i/n]

(m̃(x)−m0(x))
2 dx

≤ 2

n∑
i=1

∫
[(i−1)/n,i/n]

(m̃(x)−m0(σi))
2 + (m0(σi)−m0(x))

2 dx

(Triangle inequality)

≤ 2

n∑
i=1

[
1

n
(m̂i −m0(σi))

2 +
L2

n3

]

=
2

n

n∑
i=1

(m̂i −m0(σi))
2 +

2L2

n2
.
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The third line follows by observing (i)
∫
I(m̃(x) − m0(σi))

2 dx =
(
n
∫
I m̃(x) dx−m0(σi)

)2 1
n and (ii)

m0(·) is Lipschitz for some constant L since p ≥ 1 in Assumption 4. Therefore,

inf
m̂

sup
m0

E

[
1

n

n∑
i=1

(m̂(σi)−m0(σi))
2

]
≥ 1

2
inf
m̃

sup
m0

{
E
[∫ 1

0
(m̃(x)−m0(x))

2 dx

]
− 2L2

n2

}
≳H n

− 2p
2p+1 . □

Appendix SM10. Regret for θv

This section contains novel results on the squared-error regret for higher moments θv for some positive
integer v. Our main theoretical results correspond to the case v = 1. These results are novel for the setting
with homoskedasticity or prior independence as well (Jiang and Zhang, 2009; Soloff et al., 2021). The key
to this result is a generalization (Theorem SM10.2) of Theorem 3 in Jiang and Zhang (2009), and a gener-
alization (Lemma SM10.4) of Lemma A.1 in Jiang and Zhang (2009). These results then provide a suitable
generalization for Lemma OA3.9, which is key in controlling the distance between posterior means of two
priors as a function of their (smoothed) Hellinger distance.

We will prove a result similar to Theorem A.1. Recall An from (A.1) defined given some ∆n,Mn. The
following theorem controls the regret truncated by the event An. With β = β0 in Assumption 4, with
appropriate choice of constants in ∆n,Mn, we can ensure that P(An) ≥ 1− δ for any δ ∈ (0, 1/2).

Theorem SM10.1. Suppose Assumptions 1 to 4 hold. Fix some β > 0, C1 > 0, there exists choices of con-
stants CH,m,2 such that, for ∆n = C1n

−p/(2p+1)(log n)β , Mn = CH,m,2(log n)
1/α, and corresponding An,

E

[
1(An)

n

n∑
i=1

(
EĜn,η̂[θ

v
i | Yi, σi]− E[θvi | Yi, σi]

)2]
≲H,v n

− 2p
2p+1 (log n)

2+α
α

+2β+
2(v−1)
α

∨(3v).

Proof. We let θ∗v,i = E[θvi | Yi, σi] be the oracle posterior means and let θ̂v,i = EĜn,η̂[θ
v
i | Yi, σi] denote the

estimated posterior means from our procedure.
Note that, for a given G, η, the posterior means take the form

|EG,η[θv | Y, σ]− E[θv | Y, σ]|

= |EG,η [(s(σ)τ +m(σ))v | Y, σ]− E[(s0(σ)τ +m0(σ))
v | Y, σ]|

≤
v∑
k=0

Ck,v

∣∣∣s(σ)km(σ)v−kEG,η[τ
k | Y, σ]− s0(σ)km0(σ)

v−kE[τk | Y, σ]
∣∣∣ (Expand (a+ b)v)

≲v

v∑
k=0

max
(∣∣∣EG,η[τk | Y, σ]∣∣∣ , ∣∣∣E[τk | Y, σ]∣∣∣) ∣∣∣s(σ)km(σ)v−k − s0(σ)km0(σ)

v−k
∣∣∣

+

v∑
k=0

max
(
s(σ)k|m(σ)|v−k, s0(σ)k|m0(σ)|v−k

) ∣∣∣EG,η[τk | Y, σ]− E[τk | Y, σ]
∣∣∣ (SM10.1)

We first observe that if ∥η − η0∥∞ ≤ ∆n and ∥η0∥∞ ≲H 1, then∣∣∣s(σ)km(σ)v−k − s0(σ)km0(σ)
v−k
∣∣∣ ≲v ∆n
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and
max

(
s(σ)k|m(σ)|v−k, s0(σ)k|m0(σ)|v−k

)
≲H,v 1

Next, note that on An, ∣∣∣EĜn,η̂[τk | Y, σ]∣∣∣ ≲H Mk
n

since the prior Gn is bounded within [min Ẑi,max Ẑi]. By Lemma SM6.17, we have that, likewise on An,
the true posterior means are bounded

∣∣E[τk | Y, σ]∣∣ ≲H Mk
n . Thus, we conclude that

1(An)
(
EĜn,η̂[θ

v
i | Yi, σi]− E[θvi | Yi, σi]

)2
≲H,v ∆

2
nM

2v
n + 1(An) max

1≤k≤v

(
EĜn,η̂[τ

k | Y, σ]− E[τk | Y, σ]
)2

Summing over i,

E

[
1(An)

n

n∑
i=1

(
EĜn,η̂[θ

v
i | Yi, σi]− E[θvi | Yi, σi]

)2]
≲H,v ∆

2
nM

2v
n +

∑
1≤k≤v

E
[
1(An)

n
∥τ∗v − τ̂v∥2

]
,

(SM10.2)
where we define

τ∗v,i = E[τv | Y, σ] = EG0 [τ
v | Z, ν] τ̂v,i = EĜn,η̂[τ

v | Y, σ] = EĜn [τ
v | Ẑ, ν̂]

and define τ∗v , τ̂v as Rn vectors collecting these entries.
The rest of the proof in Appendix SM10.1 focuses on on showing that

E
[
1(An)

n
∥τ∗v − τ̂v∥2

]
≲v,H (SM10.3),

which dominates the rate in (SM10.2). Plugging the rates for δ2n,Mn concludes the proof. □

SM10.1 Bounding E
[
1(An)
n ∥τ∗v − τ̂v∥2

]
. We now decompose

1(An)∥τ∗v−τ̂v∥2 ≲ 1(An)
[
∥τ̂v,η0 − τ̂v∥2 + ∥τ̂v,η0,ρn − τ̂v,η0∥2 + ∥τ̂v,η0,ρn − τ∗v,η0,ρn∥

2 + ∥τ∗v,η0 − τ
∗
v,η0,ρn∥

2
]

where τ̂v,η0 is the posterior mean for τ under (Ĝn, η0), and τ̂v,η0,ρn , τ
∗
v,ρn are defined in (SM10.5). This de-

composition is analogous to the ξ1 through ξ4 decomposition in the proof for Theorem A.1. The following
subsections bound each term individually (here, the second term is zero). The dominant rate is in the third
term, where we show that

E
[
1(An)

n
∥τ∗v − τ̂v∥2

]
≲v,H δ2n(log n)

2(v−1)
α

∨(3v). (SM10.3)

SM10.1.1 Bounding ∥τ̂v,η0 − τ̂v∥2. For a given G, η, note that

EG,η[τ
v | Z(η), ν(η)] = EG,η[(τ − Z + Z)v | Z, ν]

=
v∑
k=0

Ck,vZ(η)
v−kEG,η[(τ − Z)k | Z(η), ν(η)] (SM10.4)
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Thus, define

Uk(m, s, Z) =

∫ (
Z−τ
ν(η)

)k
φ(Z−τν(η) ) Ĝn(dτ)

ν(η)fĜn,ν(η)(Z(η))
= EĜn,η[(Z − τ)

k | Z(η), ν(η)] 1

ν(η)k
.

We have that

1(An)
∣∣∣EĜn,η̂[τv | Ẑ, ν̂]−EĜn,η0 [τ

v | Z, ν]
∣∣∣

≲v,H 1(An)
v∑
k=0

max
(
|Z(η̂)|v−k, |Z(η0)|v−k

)
|Uk(m̂, ŝ, Z)− Uk(m0, s0, Z)|

+ 1(An)
v−1∑
k=0

|Z(η̂)v−k − Z(η0)v−k|max (|Uk(m̂, ŝ, Z)|, |Uk(m0, s0, Z)|)

Now, observe that

1(An)|Z(η̂)v−k − Z(η0)v−k| ≲v,H ∆n|Z(η0)|v−k−1

1(An)max
(
|Z(η̂)|v−k, |Z(η0)|v−k

)
≲v,H |Z(η0)|v−k

1(An)max (|Uk(m̂, ŝ, Z)|, |Uk(m0, s0, Z)|) ≲v,H logk/2(n) (Lemmas OA3.1 and SM10.3)

For |Uk(m̂, ŝ, Z)− Uk(m0, s0, Z)|, let Ukm(m, s, Z), Uks(m, s, Z) be its partial derivative with respect
to m and s, respectively. Take some intermediate m̃, s̃ lying on the line segment between η̂, η0. By Taylor’s
theorem

|Uk(η̂, Z)− Uk(η0, Z)| ≲ ∥η̂ − η0∥∞max (|Ukm(m̃, s̃, Z)|, |Uks(m̃, s̃, Z)|)

Differentiating, we find that Ukm takes the form of posterior moments of (Z − τ)/ν to the at most k + 1st

power. We find that Uks takes the form of posterior means for τ ((Z − τ)/ν)k+1 as its leading term. By the
argument in the proof to Lemma SM6.13, we find that fĜn,ν̃i(Z̃i), evaluated at η̃, is lower bounded such that
| log fĜn,ν̃i(Z̃i)| grows like log(n). As a result, we can apply Lemma SM10.3 to show that posterior means

of ((Z − τ)/ν)k+1 is bounded by log(k+1)/2(n). Thus, bounding |τ | by Mn since Ĝn has finite support as
in Lemma SM6.13, we have that

max (|Ukm(m̃, s̃, Z)|, |Uks(m̃, s̃, Z)|) ≲H,v Mn log
(k+1)/2(n).

Putting these calculations together yields that

E
[
1(An)

n
∥τ̂v,η0 − τ̂v∥2

]
=
1(An)

n

n∑
i=1

E
[(

EĜn,η̂[τ
v | Ẑ, ν̂]−EĜn,η0 [τ

v | Z, ν]
)2]

≲H,v ∆
2
nM

2
n(log n)

v+1.

SM10.1.2 Bounding ∥τ̂v,η0,ρn − τ∗v,ρn∥. Define

τ̂i,v,η0,ρn = τ̂i,v,η0
fĜn,νi(Zi)

fĜn,νi(Zi) ∨ (ρn/νi)
. (SM10.5)

123



Note that for the choice of ρn in (OA3.5), by Lemma OA3.1, the truncation doesn’t bind and τ̂i,v,η0 =

τ̂i,v,η0,ρn . Analogously, define the truncated oracle posterior means τ∗v,ρn . We next bound

ξ3v =
1(An)

n
∥τ∗v,ρn − τ̂v,ρn∥

2.

As in Appendix OA3.2, we decompose ξ3v into the following terms

ζ21v = 1(An ∩BC
n )∥τ∗v,ρn − τ̂v,ρn∥

2 (SM10.6)

ζ22v = 1(An ∩Bn)
(
∥τ∗v,ρn − τ̂v,ρn∥ − max

j∈[N ]
∥τ∗v,ρn − τ

(j)
v,ρn∥

)2

+

(SM10.7)

ζ23v = max
j∈[N ]

(
∥τ∗v,ρn − τ

(j)
v,ρn∥

2 − E
[
∥τ∗v,ρn − τ

(j)
v,ρn∥

])2
+

(SM10.8)

ζ24v = max
j∈[N ]

(
E[∥τ∗v,ρn − τ

(j)
v,ρn∥]

)2
. (SM10.9)

where:

• Bn =
{
h(fĜn,·, fG0,·) < BHδn

}
for the rate function δn in (OA3.6) and the constantBH is chosen

by Corollary OA3.1
• τ (j)i,v,ρn

= EGj ,ν [τ
v | Zi, νi] for some finite set of prior distributions G1, . . . , GN to be chosen.

The following calculation shows that

1(An)

n
∥τ∗v,ρn − τ̂v,ρn∥

2 ≲v,H δ2n(log n)
2(v−1)
α

∨(3v). (SM10.10)

For ζ1v, by Lemma SM10.2 and Corollary OA3.1,

1

n
Eζ21v ≲H,v (log n)

v/2 P
(
An ∩BC

n

)
≲ (log n)v/2

log logn

n
.

For ζ2v, ζ3v, letG1, . . . , GN be minimal ω-covering of
{
G : h(fG,·, fG0,·) ≤ δn

}
under the pseudometric

dv,Mn,ρn(H1, H2) = max
i∈[n]

max
0≤k≤v

sup
|z|≤Mn

∣∣∣∣∣EH1

[(
τ − Zi
νi

)k
| Zi = z, νi

]
fH1,νi(z)

fH1,νi(z) ∨ (ρn/νi)

−EH2

[(
τ − Zi
νi

)k
| Zi = z, νi

]
fH2,νi(z)

fH2,νi(z) ∨ (ρn/νi)

∣∣∣∣∣
(SM10.11)

such that
N ≤ N(ω/2,P(R), dv,Mn,ρn).

Under this choice, note that by (SM10.4),

|τ∗i,v,ρn − τ̂i,v,ρn | ≤
v∑
k=1

Ck,v|Zi|v−kνki

∣∣∣∣∣EĜn,η0
[(

τ − Zi
νi

)k
| Zi, νi

]
fĜn,νi

fĜn,νi ∨ (ρn/νi)

−EG0,η0

[(
τ − Zi
νi

)k
| Zi, νi

]
fG0,νi

fG0,νi ∨ (ρn/νi)

∣∣∣∣∣
≲v,H |Zi|vω
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Therefore,
1

n
E[ζ22v] ≲v,H E|Zi|vω2 ≲v,H ω2.

Analogous to Appendix OA3.2, under appropriate choices of ω, we find that for some positive constantCv

1

n
E
[
ζ22v + ζ23v

]
≲H,v

Mn(log n)
Cv

n
.

Here, the covering number N(ω/2,P(R), dv,Mn,ρn) is bounded by an application of Proposition SM6.1
analogous to Proposition SM6.2. The term E[ζ23v] is controlled analogously to Appendix OA3.2.3, where
Kn in Appendix OA3.2.3 is now of the order (log(n))v/2 thanks to Lemma SM10.3.

Finally, for ζ24v, by Jensen’s inequality(
E[∥τ∗v,ρn − τ

(j)
v,ρn∥]

)2
≤ E[∥τ∗v,ρn − τ

(j)
v,ρn∥

2].

Following (SM10.4)(
τ∗i,v,ρn − τ

(j)
i,v,ρn

)2
≲v,H

v∑
k=1

∫ ∞

−∞
z2(v−k)∆2

k(z; νi, ρn, Gj)fG0,νi(z) dz

where

∆k(z; νi, ρn, Gj) = EGj ,η0

[(
τ − Zi
νi

)k
| Zi = z, νi

]
fĜn,νi

fĜn,νi ∨ (ρn/νi)

−EG0,η0

[(
τ − Zi
νi

)k
| Zi = z, νi

]
fG0,νi

fG0,νi ∨ (ρn/νi)
.

We decompose∫ ∞

−∞
z2(v−k)∆2

k(z; νi, ρn, Gj)fG0,νi(z) dz

≤
∫
|z|>Mn

z2(v−k)∆2
k(z; νi, ρn, Gj)fG0,νi(z) dz +M2(v−k)

n

∫ ∞

−∞
∆2
k(z; νi, ρn, Gj)fG0,νi(z) dz

≲v,H logk(n)

∫
|z|>Mn

z2(v−k)fG0,νi(z) dz +M2(v−k)
n

∫ ∞

−∞
∆2
k(z; νi, ρn, Gj)fG0,νi(z) dz

(Lemma SM10.3)

≲v,H logk(n)

√
E[Z4(v−k)

i ] P[|Zi| > Mn] +M2(v−k)
n

∫ ∞

−∞
∆2
k(z; νi, ρn, Gj)fG0,νi(z) dz

≲v,H
logk(n)

n
+M2(v−k)

n

∫ ∞

−∞
∆2
k(z; νi, ρn, Gj)fG0,νi(z) dz (Lemma OA3.7)

Let Gj,ν , G0,ν be the distribution of µ = τ/ν when τ ∼ G, respectively. Let X = Z/ν be such that
X ∼ N (τ/ν, 1). Let fG0,ν , fGj,ν be the density of X and note that fX(x) = νfZ(z). Note that Hellinger
distance is invariant to this reparametrization

h2(fG0,ν , fGj,ν ) = h2(fGj ,ν , fG0,ν).
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and ∫ ∞

−∞
∆2
k(z; νi, ρn, Gj)fG0,νi(z) dz

=

∫ ∞

−∞

(
EGj,ν [(X − µ)k | Xi]

fGj,ν
fGj,ν ∨ ρn

− EG0,ν [(X − µ)k | Xi]
fG0,ν

fG0,ν ∨ ρn

)2

fG0,ν (x) dx

(SM10.12)

Let fG(x) = fG,1(x). We note that, by repeated differentiation,

f
(k)
G (z)

fG(z)
=

k∑
ℓ=0

Cℓ,kEG

[
(X − µ)k | X = x

]
(SM10.13)

where Ck,k > 0. As a result, we can write, for some different constants C,

EG[(X − µ)k | X = x] =

k∑
ℓ=0

Cℓ,k
f
(ℓ)
G (x)

fG(x)
.

Therefore, to bound (SM10.12), it suffices to bound, for k ≤ v a positive integer, G = Gj and ρ = ρn,∫ (
f
(k)
G (x)

fG(x) ∨ ρ
−

f
(k)
G0

(x)

fG0(x) ∨ ρ

)2

fG0(x) dx. (SM10.14)

Our key result in Theorem SM10.2 yields that(
τ∗i,v,ρn − τ

(j)
i,v,ρn

)2
≲v,H

∑
1≤k≤v

M2(v−k)
n max

(
log3k(n), | log h2i |k

)
h2i

where h2i = h2(fGj ,νi , fG0,νi). Note that if | log h2i | = log(1/h2i ) ≳ log3(n), then hi ≲ e−C log3(n)/2 ≲

1/n. In this case, | log h2i |kh2i ≲ 1
nhi|2 log(1/hi)|

k ≲k
1
n . Thus,

1

n
∥τ∗v,ρn − τ

(j)
v,ρn∥

2 ≲v,H
logv(n)

n
+
∑

1≤k≤v
M2(v−k)
n max

(
log3k(n)h

2
,
1

n

)

≲v,H δ2n

[
max
1≤k≤v

M2(v−k)
n log3k(n)

]
≲v,H δ2n(log n)

2(v−1)
α

∨(3v).

SM10.1.3 Bounding ∥τ∗v,ρn − τ
∗
v ∥2. By an argument analogous to Lemma OA3.4, we have that

1

n
E
[
∥τ∗v,ρn − τ

∗
v ∥2
]
≲H

1

n
.

SM10.2 Regret of misspecified Bayes rules for higher moments. The key ingredient to our argument in
this section is a bound for (SM10.14). We rely on the argument in Theorem 3 of Jiang and Zhang (2009)
(Lemma OA3.9) and generalize it to higher derivatives.

Theorem SM10.2. For an integer m ≥ 1 and ρ < e−1/
√
2π,∫ (

f
(m)
G

fG ∨ ρ
−

f
(m)
G0

fG0 ∨ ρ

)2

fG0 dx ≲m max

[
log3m

(
1√
2πρ

)
, | log h2(fG, fG0)|m

]
· h2 (fG, fG0) .

(SM10.15)
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Proof. Let w∗ =
1

fG0
∨ρ+fG∨ρ . We can add and subtract 2(f (m)

G − fmG0
)w∗ to the integrand. This means that

∫ (
f
(m)
G

fG ∨ ρ
−

f
(m)
G0

fG0 ∨ ρ

)2

fG0 dx

≲

∥∥∥∥ f
(m)
G

fG ∨ ρ
− 2f

(m)
G w∗

∥∥∥∥2
fG0

+

∥∥∥∥ f
(m)
G0

fG0 ∨ ρ
− 2f

(m)
G0

w∗

∥∥∥∥2
fG0

+

∥∥∥∥(f (m)
G − f (m)

G0
)w∗

∥∥∥∥2
fG0

, (SM10.16)

where ∥g∥2f =
∫
g2fdx.

Note that∥∥∥∥ f
(m)
G

fG ∨ ρ
− 2f

(m)
G w∗

∥∥∥∥2
fG0

=

∥∥∥∥ f
(m)
G

fG ∨ ρ+ fG0 ∨ ρ
fG ∨ ρ+ fG0 ∨ ρ

fG ∨ ρ
− 2f

(m)
G w∗

∥∥∥∥2
fG0

=

∥∥∥∥(fG ∨ ρ+ fG0 ∨ ρ
fG ∨ ρ

− 2

)
f
(m)
G w∗

∥∥∥∥2
fG0

=

∥∥∥∥ f
(m)
G

fG ∨ ρ
(fG ∨ ρ− fG0 ∨ ρ)w∗

∥∥∥∥2
fG0

.

≲m logm
(

1√
2πρ

)∥∥∥∥(fG − fG0)w∗

∥∥∥∥2
fG0

(Lemma SM10.3)

Now, ∥∥∥∥(fG − fG0)w∗

∥∥∥∥2
fG0

=

∫
(
√
fG −

√
fG0)

2 [(
√
fG +

√
fG0)

2w∗]︸ ︷︷ ︸
≤2

w∗fG0︸ ︷︷ ︸
≤1

dx

≲ h2(fG, fG0)

Thus,

(SM10.16) ≲m h2(fG, fG0) log
m/2

(
1√
2πρ

)
+

∥∥∥∥(f (m)
G − f (m)

G0
)w∗

∥∥∥∥2
fG0

≲m h2(fG, fG0) log
m/2

(
1√
2πρ

)
+

∥∥∥∥(f (m)
G − f (m)

G0
)

∥∥∥∥2
w∗

(fG0w∗ ≤ 1)

Define

∆2
m =

∥∥∥∥(f (m)
G − f (m)

G0
)

∥∥∥∥2
w∗

=

∫
(f

(m)
G − f (m)

G0
)2

fG ∨ ρ+ fG0 ∨ ρ
dx. (SM10.17)

This is bounded by Proposition SM10.1 below. Plugging in the result from Proposition SM10.1, we obtain
(SM10.15). □

Proposition SM10.1. For all m ≥ 0 and ρ ∈ (0, 1/
√
2π), in the proof of Theorem SM10.2,

∆2
m ≲m max

[
log3m

(
1√
2πρ

)
, | log h2(fG, fG0)|m

]
· h2 (fG, fG0) .
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Proof. We prove this by induction. See the proof of Lemma 1 in Jiang and Zhang for the base case (m = 0).
The inductive step is immediate with Lemma SM10.1, where we note that

∆
c0/(c0+1)
m−1 ≲m max

[
log3(m−1)

(
1√
2πρ

)
, | log h2(fG, fG0)|m−1

]
(h2)

c0
c0+1 . □

Lemma SM10.1. Define
√
log
(

1√
2πρ

)
= L(ρ). For all positive integers m, there exists some c0 > 0,

∆2
m ≲m max

(
max(L2(ρ), | log h2|)(∆2

m−1)
c0
c0+1 (h2)1/(c0+1), L(ρ)6∆2

m−1

)
Proof. The proof to Lemma 1 in Jiang and Zhang prove the following for ρ < 1/

√
2π:

(1) We have ∫
(f

(m)
G − f (m)

G0
)2 dx ≤ 4a2m√

2π
h2(fG, fG0) +

4a2m−1

π
e−a

2
.

for integers m ≥ 0 and a ≥
√
2m− 1.

(2) By integration by parts and Cauchy–Schwarz,

∆2
k ≤ ∆k−1∆k+1 + 2L(ρ)∆k−1∆k, (SM10.18)

and hence
∆k

∆k−1
≤
(
∆k+1

∆k
+ 2L(ρ)

)
.

(3) ∆2
0 ≤ 2h2(fG, fG0)

(4) We have

∆2
k ≤

1

2ρ

∫
(f

(m)
G − f (m)

G0
)2 dx.

First, let us consider the case that, for some Q to be chosen,

∆k+1/∆k > Q =⇒ ∆k+1 > Q∆k

Then (SM10.18) implies that

∆2
k ≤ ∆k−1∆k+1(1 + 2L(ρ)/Q) =⇒ ∆k

∆k−1
≤ ∆k+1

∆k
(1 + 2L(ρ)/Q).

On the other hand, if

∆k+1/∆k ≤ Q =⇒ ∆k

∆k−1
≤ [Q+ 2L(ρ)]

Fix any integer m, let k(Q) ≥ m be the first k exceeding m (if it exists) where ∆k+1/∆k ≤ Q occurs.
On the other hand, fix some k0 ≥ m.

Case 1: If k(Q) > k0, then for all m ≤ k ≤ k0 + 1,

∆m

∆m−1
≤
(
1 +

2L(ρ)

Q

)k−m ∆k

∆k−1
.

Thus,

∆m

∆m−1
≤

(
k0+1∏
k=m

(
1 +

2L(ρ)

Q

)k−m ∆k

∆k−1

)1/(k0−m+2)
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≤
(
1 +

2L(ρ)

Q

)(k0−m+1)/2

(∆k0+1/∆m−1)
1/(k0−m+2) .

Let c0 = k0 −m+ 1. We then have that

∆2
m ≤

(
1 +

2L(ρ)

Q

)c0
(∆2

m−1)
c0
c0+1 (∆2

k0+1)
1

c0+1 .

∆2
k0+1 ≲

a2k0+2

√
2πρ

(
h2(fG, fG0) + e−a

2
/a
)

(a ≥
√
2k0 + 1)

≲
a2k0+2

√
2πρ

h2(fG, fG0) (a ≥ max
(√

2k0 + 1,
√
| log h2|

)
)

Thus,

∆2
m ≤

(
1 +

2L(ρ)

Q

)c0
(∆2

m−1)
c0
c0+1a

2
(
1+ m

c0+1

)(
1√
2πρ

) 1
c0+1

(h2)1/(c0+1).

Case 2: On the other hand, if k(Q) ≤ k0, then

∆m ≤
(
1 +

2L(ρ)

Q

)k(Q)+1−m
[Q+ 2L(ρ)]∆m−1.

Consider the following choices:

(1) c0 = ⌈(m− 1) ∨ (L2(ρ)− 1)⌉ ≥ (m− 1) ∨ (L2(ρ)− 1)

(2) Q = 2L(ρ)c0

(3) a = max
(√

2(m+ c0) + 1,
√
| log h2|

)
.

Therefore, if k(Q) > k0, then

∆2
m ≲m max(L2(ρ), | log h2|)(∆2

m−1)
c0
c0+1 (h2)1/(c0+1)

Otherwise,
∆2
m ≲m L(ρ)6∆2

m−1.

Taking the maximum of these two yields the bound in the statement of the lemma. □

SM10.3 Auxiliary lemmas.

Lemma SM10.2. Under the assumptions in Theorem SM10.1, in the proof of Theorem SM10.1, 1(An)n ∥τ∗v,ρn−
τ̂v,ρn∥2 ≲H,m (log n)v.

Proof. By (SM10.4), we have that

|τ∗i,v,ρn − τ̂i,v,ρn | ≤
v∑
k=1

Ck,v|Zi|v−kνki

∣∣∣∣∣EĜn,η0
[(

τ − Zi
νi

)k
| Zi, νi

]
fĜn,νi

fĜn,νi ∨ (ρn/νi)

−EG0,η0

[(
τ − Zi
νi

)k
| Zi, νi

]
fG0,νi

fG0,νi ∨ (ρn/νi)

∣∣∣∣∣
≲v,H logv/2(n)|Zi|v (Lemma SM10.3)

Thus,
1(An)

n
∥τ∗v,ρn − τ̂v,ρn∥

2 ≲v,H logv(n)
1

n

n∑
i=1

|Zi|2v ≲v,H logv(n).
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This completes the proof. □

Lemma SM10.3. Let Z | τ, ν ∼ N (τ, ν2) and let k be a positive integer. For all ρ < 1
e
√
2π

Then∣∣∣∣∣EG
[(

Z − τ
ν

)k
| Z = z, ν

]
fG,ν(z)

fG,ν(z) ∨ (ρ/ν)

∣∣∣∣∣ ≲k log
k/2

(
1√
2πρ

)
.

Proof. Now, by Jensen’s inequality and Lemma SM10.4,∣∣∣∣∣EG
[(

Z − τ
ν

)k
| Z = z, ν

]∣∣∣∣∣ ≲k max

(
logk/2

(
1√

2πνfG,ν(z)

)
, 1

)
Observe that the function

t 7→ logk/2
(

1√
2πt

)
t

t ∨ ρ
t ∈ (0, 1/

√
2π)

is decreasing in t for t > ρ and increasing in t for t ≤ ρ. Thus, it attains a maximum at logk/2 1√
2πρ

> 1.
This completes the proof. □

Lemma SM10.4. Let Z | τ, ν ∼ N (τ, ν2) and let k be a positive integer. Then

EG

[(
Z − τ
ν

)2k

| Z, ν

]
≤ e

(
2k

e

)k
max

(
logk

(
1√

2πνfG,ν(z)

)
, 1

)
.

Proof. Let W (τ) = Z−τ
ν ∼ N (0, 1). Note that for t ∈ (0, 1],

E
[
etW

2/2 | Z, ν
]
=

1√
2πνfG,ν(z)

∫
exp

(
−1

2
(1− t)W (τ)

)
G(dτ)

≤ 1√
2πνfG,ν(z)

∫ (
exp

(
−1

2
W (τ)

))1−t
G(dτ)

≤ 1√
2πνfG,ν(z)

(
√
2πν)1−t

{∫
1√
2πν

exp

(
−1

2
W (τ)

)
G(dτ)

}1−t

(Jensen’s inequality)

=
(√

2πfG,ν(z)
)−t

The left-hand side is the moment-generating function ofW 2(τ)/2 under the law τ | Z, ν induced by τ ∼ G.
Thus, by Lemma SM10.5,

E[W 2k] ≤
(
2k

te

)k (√
2πfG,ν(z)

)−t
Optimize this bound with

t =
1

1 ∨ log
(

1√
2πνfG,ν(z)

) ∈ (0, 1],

then the above yields

EG

[(
Z − τ
ν

)2k

| Z, ν

]
≤ e

(
2k

e

)k
max

(
logk

(
1√

2πνfG,ν(z)

)
, 1

)
.

This completes the proof. □
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Lemma SM10.5. For a nonnegative random variable X whose moment-generating function exists, for any
k and t > 0 such that E[etX ] exists,

E[Xk] ≤
(
k

te

)k
E[etX ]

Proof. This is immediate from the observation that xm ≤
(
m
te

)m
etx for all x ≥ 0, t > 0. This inequality

is included on the Wikipedia page on moment-generating functions (Section “Other properties”, accessed
2024-04-15). □
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